
Sensor-Data Fusion for Multi-Person Indoor Location
Estimation

by

Parisa Mohebbi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Parisa Mohebbi, 2018



Abstract

We consider the problem of estimating the location of people as they move and

work in indoor environments. More specifically, we focus on the scenario where

one of the persons of interest is unable or unwilling to carry a smartphone,

or any other “wearable” device, which frequently arises in caregiver/cared-for

situations. We consider the case of indoor spaces populated with anonymous

binary sensors (Passive Infrared motion sensors) and eponymous wearable sen-

sors (smartphones interacting with Estimote beacons), and we propose a so-

lution to the resulting sensor-fusion problem. Using a data set with sensor

readings collected from one-person and two-person sessions engaged in a va-

riety of activities of daily living, we investigate the relative merits of relying

solely on anonymous sensors, solely on eponymous sensors, or on their combi-

nation. We examine how the lack of synchronization across different sensing

sources impacts the quality of location estimates, and discuss how it could be

mitigated without resorting to device-level mechanisms. Finally, we examine

the trade-off between the sensors’ coverage of the monitored space and the

quality of the location estimates.
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Chapter 1

Introduction

According to a 2012 study commisioned by the Alzheimer’s Society of Canada,

747,000 Canadians have some type of cognitive impairment, including demen-

tia, and this number is expected to double by 2031. People with dementia

experience challenges with daily activities (e.g., cooking meals, ironing, tak-

ing medication, personal care), such as misplacing materials and failing to

complete tasks in the right sequence. Having accurate information about an

older adult’s daily activities, and the patterns of these activities, can provide

rich information on his/her abilities and capacity for functional independence.

Major deviations in daily patterns should likely be considered as indicators of

a person’s physical, cognitive and/or mental decline. Having such information

could alert caregivers of potentially risky events and the need for additional

support.

The advancing wave of Internet-of-Things technologies holds immense pro-

mise for enabling such data collection and analysis and for delivering appropri-

ate support. In the SmartCondoTMproject, we have been developing a sensor-

based platform for non-intrusively monitoring people at home, analyzing the

collected data to extract information about the occupants’ activities, simu-

lating the extracted information in a 3D virtual world, and generating recom-

mendations for themselves and their caregivers. To meet the non-obtrusiveness

requirement of our platform, we have excluded from SmartCondoTMany im-

age and video capture devices. Of course, for the sake of reconstructing the

ground truth via manual annotation, the experiments we carried out also in-
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cluded video cameras. However, in a production-environment deployment, no

cameras would be used.

This hardware–software platform has been installed in the SmartCondoTM

simulation space, a dedicated teaching-and-research space in the University of

Alberta’s Edmonton Clinic Health Academy (ECHA). The SmartCondoTM is

a fully functional apartment with one bedroom, a bathroom, and an open

kitchen-and-living space. Infused into the apartment and its furnishings are

sensors that record a variety of environmental variables (i.e., levels of light

and sound, temperature, and humidity) as well as the activities of the occu-

pant(s) (i.e., their motion and use of furniture, cabinetry, and appliances).

The data acquired by these sensors is transmitted and analyzed into a central

cloud-based repository. The SmartCondoTMhas recently been redesigned to

include Bluetooth Low-Energy (BLE) beacons attached to different objects in

the apartment. The occupants can be provided with a smartphone, running a

background service that collects, and transmits to the SmartCondoTMplatform,

signal-strength measurements from any nearby BLE beacons. These two types

of data sources—sensors and beacons—are used to infer the occupants’ loca-

tions at each point in time. The server generates textual reports, spatial

visualizations, and 3D virtual-world simulations for the inferred movements

and activities of every occupant. In addition, it can potentially generate alerts

for special incidents, which can be sent to the occupants’ caregivers, or anyone

of their choice.

In the previous works that have been done on the SmartCondoTMproject in

the software engineering and network labs, the trade-offs between the accuracy

of the location-estimation process for one occupant, based on PIR (Pyroelectric

or “Passive” Infrared) sensors only vs. the overall cost of the sensor installation

has been investigated [36]. Next, a study has been done on how the use of

RFIDs in addition to PIRs could be exploited to enable location recognition

for multiple occupants [4]. In this project, we investigated the use of BLE

sensors (Estimote stickers and beacons1) for the purpose of indoor localization

and activity recognition. Moving one step further, we studied the possibility

1https://www.estimote.com/
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of fusing Estimote stickers data with PIR motion sensors to do multi-person

localization.

Multi-person location estimation, as the first step to activity recognition,

is a challenging problem and has received relatively little attention in the liter-

ature. This is partly due to the implicit assumption that if the subjects carry

with them active (hence, eponymous) devices, each person can be localized

independently, in isolation of the rest; hence, any method for estimating the

location of a single individual is assumed to generalize to multiple individu-

als. However, the situation is drastically different when one (or more) of the

subjects do not systematically carry/wear such a device, either because they

cannot, they do not want to, or they simply forget to – typical of many care-

delivery scenarios. Estimating the location of an individual does not yield the

same results when applied to a scenario when the individual is alone vs. when

the individual is one among many in the observed space. For example, the ra-

dio frequency (RF) propagation environment in a given space varies over time

because of the dynamics of human and object placement within that space. In

fact, [38] has utilized the impact of humans on the RF environment to estimate

the locations of multiple subjects, based on models of how the fingerprints of

radio signal strength indicators (RSSIs) change in the presence of people in

the space. Nevertheless, this method requires a large set of transmitters and

receivers to cover the entire area in each room and the placement of the trans-

mitters/receivers needs to be exact to ensure that they are in the line of sight

(LoS). We address more of the related work in the next section, noting that

our assumptions align closer with those of [26] where individuals carry smart-

phones, with the notable difference that we allow one of the individuals to not

wear or carry any identifying device.

In the previous work on SmartCondoTMproject [4], they targeted the de-

velopment of a method using RFID readers embedded in the environment and

wearable passive RFID tags. Such an approach is limited in terms of practical-

ity because RFID readers today—especially if endowed with large antennas to

attain reasonable range—are difficult to embed in everyday surroundings with-

out expensive retrofitting of the space (and frequently violating the aesthetics
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of “home” environments). The passive RFID tags also have to be embedded

in everyday items (e.g., clothing), and hence the reliability is generally com-

promised unless specially treated to cope with washing and other everyday

wear-and-tear.

In this thesis, first, with our Estimote+WiFi method, we conducted ex-

periments on Estimote stickers attached with simple adhesive glue on surfaces

around the home which data is collected through an application running on the

occupants’ Android smartphones. We used an RSSI-to-distance model to con-

vert their RSSI values to distance, fused it with WiFi-based location estimates,

and used it for the localization. Based on the results of our experiments, we

decided to move forward to fuse the Estimote sensors’ data with PIR motion

sensors (Estimote+PIR method), and focus on (a) the fusion of data collected

by PIR motion sensors with data collected from tiny BLE beacons. We then

(b) evaluate the effectiveness of our method through an empirical study in

the SmartCondoTM , exploring caregiver scenarios where one individual does

not wear a device nor carries a smartphone, while the second (typically the

caregiver) carries such a device. In addition to its applicability to realistic

care-giving scenarios, the main advantage of the technique described here is

that the location of the two individuals can be accurately determined [25].

This thesis is organized as follows. Chapter 2 briefly discusses the most re-

cent related work in the field of localization and activity recognition. Chapter

3 explains our methodology and algorithm by talking about the steps we took

to achieve our goal in two sections. Section 3.1 describes our Estimote+WiFi

method and reports the study on using our RSSI-to-distance model on Esti-

mote beacons data. Next, in section 3.2, the Estimote+PIR method, which is

fusing Estimote beacons with PIR motion sensors, is described. Chapter 3.2.6

outlines our experimental methodology, and the results of our experiments.

After testing our system and evaluating its accuracy in the real environment,

we decided to make some changes to the design of the software to make it

more appropriate for the real applications, these modifications are explained

in detail in chapter 4. At the end, chapter 5 concludes the thesis with our

findings and discusses the possible future work paths.
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Chapter 2

Related work

Over the past decade, the area of indoor location estimation has resulted in

many proposals and research findings, with varying degrees of applicability in

real environments. We categorize these proposals by the technology they use

and the main problem they are trying to solve.

2.1 RSSI-Based Methods

Within the family of RSSI-based methods, there are two different approaches.

The most popular one, range-based localization, involves, first, converting

RSSI values to distances via some model mapping, and then localizing the

target by combining the distances to all the sensors “visible” to the target.

Here, visible means sensors within a distance that allows their transmissions

to be received. There are several ways to convert RSSI to distance: [23]

uses path-loss modelling; [7] reports on several alternative models, including

a linear model, a free-space Friis model, a flat-earth model, etc., while [32]

compares distance extrapolation and interpolation, after selectively removing

sensors from consideration. All these methods suffer from a certain accuracy

penalty, due to the fact that the environment can substantially influence sig-

nal strength, which is not as consistent as anticipated by the RSSI-to-distance

models.

The second approach is based on RSSI fingerprinting. RSSI readings for

specific points in the space are collected in a database of readings at known

locations; at runtime, when a new RSSI reading is received, it is compared to
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the dataset and the “nearest” point (according to some definition of distance)

is selected as the likely location. For example, [27] introduced a fingerprint-

ing system utilizing passive RFID tags and four RFID readers and used a

k-nearest-neighbor (kNN) method to select the nearest points to the received

signal when localizing. In a building with two bedrooms and with space logi-

cally divided in a grid-like fashion of cells of size 1.5 × 1.5 m2, their method

achieved a reported accuracy as 96% when localizing at the granularity of a

grid cell. Another fingerprinting method was described in [22] using iBea-

cons, for the purpose of recognizing in which room the target is located. This

method has used the same BLE sensors that we are using as part of this study;

However, the evaluation metric adopted in [22] is very coarse-grained, i.e., rec-

ognizing an individual’s presence or not in a room, which is insufficient for

ambient assisted-living services. That is why, in our study, we measure and

report accuracy in terms of distance between inferred and actual locations.

Furthermore, in our study, we also consider the use of PIR motion sensors as

an additional source for localization. The combination of localizations based

on the visible sensors has been carried out in [23] using a weighted scheme,

where the weights are proportional to the corresponding RSSI. In [29], RSSI

data is systematically collected at various locations, and the (unknown) target

point is localized based on how close its RSSI measurements are to the pro-

filing points. Typical of fingerprinting methods, it requires prior RSSI data

collection, which is a task sensitive to the environment that needs to be re-

peated should the environment change in ways that impact the radio frequency

propagation (e.g., when furniture is added/removed/moved).

2.2 Pedestrian-Dead-Reckoning Methods

(PDR)

Another school of thought pays attention to the kinematics and relates the

generation of the location estimates with the direction of movement of the

individuals. An example is the pedestrian dead-reckoning (PDR) algorithm

[5], where new location estimates are based on previously known locations.
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For example, in [6], a PDR was proposed with WiFi and iBeacon signals, used

to calibrate the drifting of the PDR algorithm by converting their RSS values

to meters via a path-loss model. This family of methods requires a fall-back

scheme for estimating locations in the absence of previous estimates in two

cases: (a) when the initial location needs to be established, and (b) when suf-

ficient error has accumulated, based on the estimates following the kinematics,

such that a “re-initialization” of the estimation needs to take place. While we

take some measures to consider the kinematic behaviour of the individuals,

we do not rely on it, as the activities in which an individual is engaged in

a small indoor space call for frequent changes of direction and speed, and

some tasks are fundamentally unsuitable for dead-reckoning approaches (e.g.,

broom sweeping). In another PDR approach in [39], the authors used WiFi

fingerprints with particle filtering to calibrate the PDR error after time, and

they performed their experiments when the subject was walking in a path

and used the location estimation approach to track the subject. In [18], an

RFID-based indoor location estimation is proposed for the elderly living alone,

which uses both RSSI for localizing the subject and fuses it with a PDR using

accelerometer data to step and direction detection to increase the accuracy.

We hasten to add that in the IPIN 2016 offline competition [34], the best

team introduced a PDR with RSS fingerprinting for the initial position with

an accuracy of 2 m for a single individual in one of the spaces considered. The

other four best teams performed RSSI fingerprinting, PDR, and MAC address

filtering and fingerprinting with less accurate results.

In [40], PDR is used with WiFi and iBeacon fingerprinting: the iBeacon

is used only where the WiFi signal is not strong enough. Similar to profiling,

methods that use path-loss models rely on a model-configuration step, specific

to the building and the environment where they are deployed, and changes to

the environment require a re-computation of the path-loss model parameters

to preserve accuracy.

In this thesis, we first started by adopting a variation of the range-based

approach, via a model-fitting step, based on numerous RSSI data collected

at different known distances to a beacon. The rationale is that BLE signals
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are of very low power, that, especially if we ignore very small RSSI values,

measurements are possible only to within a few meters from a BLE emitter.

At short distances, the line-of-sight signal component is frequently the most

dominant and hence the impact of the surrounding environment is lessened [24]

(Estimote+WiFi method). After analyzing the results, we decided to consider

only RSSI values higher (stronger) than −70 dBm (Estimote+PIR method).

The way we chose this threshold is defined based on the study we did in section

3.1. In this fashion, the RSSI values only matter when they are strong enough

to act as proximity sensors rather than as a model for distance calculation.

2.3 WiFi-Based Methods

In [9], the authors study the impact of multiple occupants on the RSSI mea-

surements from WiFi access points between a pair of transmitter/receiver an-

tennas when walking in between them. They analyzed the impact of blocking

the line of sight and scattering effects on the received signal measurements to

count the number of people in the area and attained an error of two people

or less. In another study in [1], another multi-person localization method is

proposed by studying the reflection of wireless signals off the occupants’ bod-

ies. This method, similar to the one discussed earlier, is just for detecting

the number of persons in the environment and cannot identify them. Another

method discussed in [35] can localize a single person with an error of only 80

centimetres on average in an area, with use of a single WiFi access point. This

method calculates sub-nanosecond time-of-flight and is dependent on the use

of the Intel 5300 WiFi card.

2.4 Self-Calibration Methods

A self-calibrated system is proposed in [3], where the sensors (smartphones

in this case) communicate with each other to determine first their locations

relative to each other, and subsequently the location of the target wearing one

of these transmitters/receivers. A master node sends acoustic signals to the

others to localize themselves with respect to the master node with the power
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and the direction of arrival (DOA) of signals received by the two microphones

on the smartphone. An iterative expectation-maximization method is then

used for the nodes to communicate their local estimate to the rest of the

nodes. While the reported results appear to be excellent, they are produced

under a completely static network—an assumption incompatible with most

realistic scenarios. Static nodes are also used in the evaluation of the method

outlined in [20], which utilizes a trilateration algorithm to localize each node

in a multi-sensor network after converting the received signal strengths to

meters via a path-loss model. An interesting feature of this algorithm is that it

incorporates a means to temporally align the collected signal strength readings.

In [17], an anchor-free self-calibration is proposed by means of an “Iterative

Cole Alignment” algorithm based on a spring-mass simulation [37], and ensures

synchronization by assuming that all receiving devices are linked to the same

laptop; this method was evaluated assuming that the target always remains

within a confined area.

In general, the question of how localization methods are evaluated arises

in many publications, including the ones we discussed above. For example,

static node configurations and artificially confined locations for the targets are

fundamentally unrealistic and are bound to fail in the scenarios motivating our

research. In this study, we collect sensor data resulting from the movement

of one (or two) individual(s) in an actual apartment, following real (albeit

scripted for the sake of consistency) movement scenarios in this apartment.

2.5 Synchronization

Indeed, when trying to use data collected from multiple sensors for location

estimation (and activity recognition), a noticeable problem is sensor synchro-

nization: most of the time, the clocks of the emitting sensors and devices

involved are not completely synchronized. The approach proposed in [31] as-

sumes that multiple sensors—each with its own clock and all connected to a

single host—collect their timestamped observations in a FIFO (First-In-First-

Out) structure; the host fetches the sensor data and performs a reconstruction
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of the sensor sample times, assuming a constant drift for each sensor and deter-

ministic communication times. In our work, synchronization is not explicitly

solved at the data-collection step; instead, we introduce the concept of a time

“window” which abstracts the timestamp units at a coarser granularity and al-

lows our Estimote+PIR method to ignore the imperfect synchronization of the

data sources/sensors. As we will see, the window size can have a substantial

effect on the accuracy of results.

2.6 Multi-Person localization

The field of multiple person location estimations has received less attention

from researchers. The majority of work in this area has been limited to count-

ing how many occupants there are in the space. For example, [2] uses only

binary sensors to count the people present within an area, eliminating the

outliers due to incorrect sensor firing. The algorithm is initialized with the

assumption that only the minimum number of sensors are outliers, and re-

peatedly increases the number of outliers until a solution is produced. Unfor-

tunately, this method cannot recognize two occupants when their movement

paths cross. [12] uses RFID tags and readers for the same person-counting

task: the method maintains an uncertainty circle for each person, with a ra-

dius computed as the product of their speed of movement multiplied by the

time lapsed; when a new event comes from a reader, the method assumes the

person most likely to have moved in the vicinity of the reader based on their

uncertainty circle and their direction of movement. A more recent paper by

the same group [14] uses a much more expensive Kinect sensor to actually

estimate the occupants’ locations.

2.7 Sensor Placement Strategies

When using motion sensors, it is important to know how to place them to

achieve the best accuracy while minimizing the cost. [11] proposes a method for

optimizing the placement of PIR sensors in order to meet the desired accuracy

requirements while minimizing the cost. Their procedure hierarchically divides
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the space to sub-areas, based on walls and other obstacles such as large static

furniture pieces. It then superimposes a grid on the space, whose length is

determined by the accuracy needed, and solves the optimization problem of

placing sensors so that the maximum possible number of grids cells are covered.

In our group’s previous work, they developed a sensor-placement method that

optimizes the information gain obtained by each additional PIR sensor placed

in the space [36].
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Chapter 3

Two Sensor-Fusion Methods

We used two approaches for indoor localization with ambient sensors. We

started by examining how the Estimote stickers perform and the possibility of

fusing their data with wifi-based localization, which is provided by Google Fus-

edLocationApi, to achieve a better result. This Estimote+WiFi method was

inspired by the fact that wifi is broadly available, in most residential buildings,

these days and the Estimote stickers are very cheap and easy to deploy. We

conducted multiple experiments to evaluate the feasibility and effectiveness of

this method and realized that the Estimote RSSI values are very noisy, even

when the target is not moving and in spite of using a data-smoothing method.

Furthermore, a simple use of WiFi for localization using coarse-grained lo-

calization services, such as the one via Google’s API, does not perform well

in indoor environments. Finally, this method also suffered from a costly de-

ployment requirement, since the RSSI-to-distance model must be re-calculated

whenever the environment changes. Because of all these shortcomings, we real-

ized that the Estimote+WiFi method was unlikely to be effective in a realistic

indoor environment.

Motivated by these findings, we proceeded to develop a different approach,

relying on thresholding of the Estimote RSSI values and fusion with a much

more reliable sensor type, namely Passive Infrared motion sensors (PIR). The

use of PIR motion sensors was motivated by the previous work that has been

done around these sensors [4][36]. The intuition behind this Estimote+PIR

method was to use the Estimotes to address the PIR’s inability of distinguish-
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Figure 3.1: Structure of the Estimote+WiFi method

ing multiple occupants in the space. Moreover, the PIR sensors can only detect

the presence of a person only when they move, hence, static occupants may

not be detected. Their ability is also compromised by the need for line of

sight between the sensor and the occupant so the existence of obstacles in the

building may reduce the ability to detect any movement.

Section 3.1 discusses our Estimote+WiFi method and Section 3.2 discusses

the Estimote+PIR method, which was validated with multiple comprehensive

experiments in a real environment with one or two volunteers doing a scripted

activity set in the SmartCondoTM .

3.1 The Estimote+WiFi Method

Our localization methodology involves two deployment configuration steps.

First, we systematically traverse the space within which localization is to be

performed to collect RSSI data from each visible beacon. Next, we summarize

the collected data into a model that correlates signal strength with distance from

each beacon. At runtime, localization is performed through trilateration of the

distances estimated by the model, given the run-time RSSI values observed.

As an additional input, at run-time, we also consider WiFi-based localization

as provided by the Google FusedLocation API. Figure 3.1 shows the different

steps of this method.

3.1.1 Smoothing

To recap, our localization problem involves estimating the location of a smart-

phone in an indoor space covered by WiFi access points, with a number of
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Figure 3.2: Histogram of differences between maximum and minimum values
of RSSI recorded from a single sensor, at the same location, for stationary
receiver at distances ranging from 1 to 10 meters away from the sensor.

Estimote stickers and beacons on the walls.

As we have already mentioned, even when the smartphone does not move

and the environment does not change, RSSI values observed by the smartphone

(and the corresponding location estimates) may vary. It can be confirmed by

Figure 3.2, which depicts the histogram of RSSI range from a sensor received

at a fixed point. This is why we decided to employ a smoothing algorithm to

improve the stability of our localization process. A process that describes how

to take into account the velocity and location history of the target is described

in [21]. In our study, we adopt a smoothing filter motivated by the intuition

that the target is not moving arbitrarily and there is a correlation between

previous locations and current location. Therefore, our process smooths data

with a weighted, moving-average algorithm that assigns a larger weight to

the current RSSI and less to the past N estimated values, the value of N in

the experiments section was set to 10. This value was determined by doing

a 10-fold cross-validation over a small test set of data, selected from each

experiment.
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3.1.2 RSSI-to-Distance Model Construction

RSSI is the strength of the signal received by a listener from an emitting de-

vice, which in our case are Estimote stickers and beacons; based on multiple

observations of correlated RSSIs at multiple locations, a model can be con-

structed to convert signal strength to distance. By using a single platform for

the stickers/beacons, we are reasonably confident that the power of the signal

emitted from each device is the same, thus avoiding the introduction of errors

if multiple differently manufactured devices are used in the sticker/beacon

roles. The set of distances of a smartphone equipped with a listener service

from different stickers/beacons at known locations can be used to compute an

estimate of the smartphone’s location, via trilateration.

The RSSI is reported in dBm and, for Estimote stickers, if the transmission

is set at the maximum power of +4 dBm, the RSSI was recorded to be in a

range from -26 to -100 dBm. We fit a model mapping RSSI values to distance

from the emitting sticker, in meters.

In order to construct an adequately accurate model, we collected around

7500 RSSI values by moving slowly, with regular steps, from a distance of

0.25m to a distance of 13m from the sticker, holding the smartphone at the

same height and facing directly at the sticker. At each distance step, the

average value of around 500 readings was computed as the representative RSSI

value for that distance. Then we fit a model to these RSSI-distance points

(shown in Figure 3.3) which was subsequently used during the localization

process. Equation 3.1 shows the obtained model where RSSI is in dBm and

d (distance) is in meters.

d = 1.197× 10−4 × e(−0.1307×RSSI) (3.1)

This exponential relation between RSSI and distance is expected based on

the previous research on RSSI to distance models such as presented in [23] and

[7].
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Figure 3.3: Obtained RSSI vs. distance model.

3.1.3 Generation of Candidate Estimates

Let A, B, and C be the three vertices of a triangle defined by three signal-

emitting devices, visible by the signal-listener service running on the smart-

phone.

Using the RSSI-distance model constructed above, three values will be com-

puted as estimates of the distance between the listener-device and each of the

corresponding emitting stickers. Let these values be d1, d2 and d3 respectively.

Ideally, with three stickers, our target point will be at the intersection of three

circles, centred at A, B and C and with the corresponding radius of d1, d2,

and d3. In that case, the problem can be formulated with the equation 3.2,

where the stickers’ positions are at [xi, yi] while sticker i is at a distance of di

from the to-be-localized point, at [x, y]. Unfortunately, because the distance

estimates are not accurate, the exact intersection of the three circles may not

be a single point (no single solution), or worse, such an intersection may not

even exist.

A typical method for addressing the problem of inaccurate distance esti-

mates involves using Equation 3.2 to formulate an LSE (Least Squared Error)

instance [29], [30]. With the LSE approach, the result of Equation 3.2 can be

determined using equation 3.3, where A and b hold the equations 3.4 and 3.5.
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{ (x1 − x)2 + (y1 − y)2 = d21
(x2 − x)2 + (y2 − y)2 = d22
(x3 − x)2 + (y3 − y)2 = d23

(3.2)

[
x
y

]
= (ATA)−1AT b (3.3)

A = 2

[
x3 − x1 y3 − y1
x3 − x2 y3 − y2

]
(3.4)

b =

[
(d21 − d23)− (x21 − x23)− (y21 − y23)
(d22 − d23)− (x22 − x23)− (y22 − y23)

]
(3.5)

A further, combinatorial, step of processing is implemented on top of the

trilateration and is described in subsection 3.1.5.

3.1.4 WiFi-based Location Estimation

The FusedLocation API provided by Google estimates the location of a smart-

phone with help of GPS, WiFi and cellular access points. With the use of a

variable called priority, we can force it to use only WiFi because our interest

here is indoor localization, and GPS is not useful in this context. To obtain

data from this service, one only need is a smartphone with the application in-

stalled and WiFi enabled; then, when the phone moves within an area covered

by WiFi access points, the application estimates, in real time, the location of

the smartphone.

3.1.5 Outlier Rejection

A particular feature of our approach is the way in which outliers are rejected.

Instead of qualifying a particular measurement as an outlier, we systematically

eliminate candidate localizations as outliers. Specifically, for each location, we

produce multiple candidate localizations. It is the clustering of the candidate

locations that decides which candidate localizations will be called outliers.

The mix of candidate estimations of a target’s location is enriched with the

introduction of the FusedLocation-based estimate. Hence, the FusedLocation
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estimate is of value only if, and to the extent that, it is not an outlier local-

ization.

The question of generating multiple candidate localizations is addressed

by performing multiple trilaterations. Specifically, the trilateration LSE is

applied to every three-sticker/beacon combination, thus producing a corre-

sponding plurality of estimates for the location of the smartphone. Whereas

it would have been possible to run LSE for all the received beacon signals

(i.e., a single multilateration), we instead run as many LSE sub-problems as

allowed by the combinations of, three at a time, measurements of the signal

from the beacons/stickers. Essentially, if a beacon’s measurement is an outlier,

its impact on the localizations where it participates may be to cause an outlier

localization. Instead of characterizing the quality of the data measurement as

an outlier, we characterize as outlier its impact on localization (if it is indeed

hurtful to the localization). In general, such outliers are to be expected as the

impact of nearby structures on signal strength, objects between the device and

beacon (e.g. person’s body), power issues, and etc.

In our study, we identify and eliminate two types of outliers. First, we

ignore all location estimates that fall outside the experiment area, because

we assume that with use of other services, such as ingress/egress monitoring

to an assisted living facility, applications will be aware whether we are in-

side or outside the area in which localization is performed. Second, we use a

K-Nearest-Neighbor (KNN) clustering algorithm to exclude “unlikely” local-

ization candidates. Intuitively, our algorithm aims at identifying the densest

cluster of location estimates, and, excludes all other location estimates as noisy

outliers. The value of K is determined by using a cross-validation approach

to find out the K that results in the best accuracy for the whole localization

process in a sample experiment.

3.1.6 Location-Estimate Fusion

Once all possible trilateration-based location estimates and the FusedLocation

estimate have been collected and the outliers have been eliminated, our local-

ization process produces a weighted average across all of them. The weights,
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αi, are selected such that estimates that are distant from the rest are given

less weight. Specifically, αi is the weight of the i–th estimate (corresponding

to estimate point xi) and is calculated as the inverse of the summation of its

distance to all remaining estimates. Equation 3.6 captures how the weight

for the i–th estimate is calculated. Note that, here, xi’s are two-dimensional

vectors, and the distance function is the ordinary Euclidean distance.

αi =
1∑n

j=1 distance(xi, xj)
(3.6)

The combined location estimate (equation 3.7) is calculated as a weighted

and normalized sum of all the individual estimates, i.e.,∑n
i=1 xiαi∑n
i=1 αi

(3.7)

Roughly speaking, this choice for weighted average tends to place the local-

ized point in the “middle” of the densest area of individual estimates. Keeping

in mind that these estimates are the result of combinations of trilaterations

(plus the WiFi localization), it essentially places the final location within a

small distance away from that which would approximately satisfy most of

the produced trilateration estimates. This, however, does not mean that the

localization is exact in the absolute sense, hence we conduct a number of ex-

periments to assess its accuracy.

3.1.7 Evaluation and Results

We developed two mobile applications, one for Android and a second for iOS

devices. The applications are in effect simple background services that listen to

packets from the Estimote nodes and save the RSSI values of the transmissions

received, together with their corresponding timestamps. In parallel, the service

also invokes the Google FusedLocation API to obtain the phone’s latitude and

longitude at each time stamp. The localization method, described in Section

3.1.1 through 3.1.6, is implemented in MATLAB on a remote server, i.e.,

not on the smartphone devices. The localization processing time averaged

approximately 30 milliseconds, which implies that it is feasible to perform it

as a service for real-time localization.

19



We conducted three experiments, in three different buildings and in three

different spaces, which we describe in detail in this section. In the first experi-

ment, taking place in the building where the Computing Science department is

housed, we used both BLE sensors and Google FusedLocation API to localize

the phone; because we had an adequate number of WiFi access points for the

WiFi localization (in contrast to the relative paucity of WiFi access points

in the remaining two buildings). In the second and third one, only the BLE

sensors were used.

Experiment 1

We ran an experiment in an area in Computing Science department, at the

University of Alberta, consisting of three corridors with lengths of 10.5, 54.5

and 19.5 meters and width of 1.5 meter. There were several WiFi access points

in the area and 26 beacons were affixed on the walls and the experimenter

moved around the area with a smartphone (Samsung Galaxy S4) in her hand,

maintaining the smartphone at a consistent height in order to reduce the effect

of environment on the received signals.

Figure 3.4 shows the map of our experiment area. The brown stars cor-

respond to the stickers on the walls, 26 in total. The experimenter walked

through the area starting from the bottom-left corner, staying at each of the

blue points for 30 seconds, and then moving to the next one.

Experiment 2

In this experiment, we examined the accuracy of indoor localization with just

the BLE sensors. This experiment took place in an empty room, at the Ed-

monton Clinic Health Academy (ECHA) of the University of Alberta. The

room’s dimensions are 10.73 meters by 10.9 meters and it was populated by

42 stickers and beacons fixed to the walls and the same experimenter was mov-

ing around with the same smartphone in her hand. We tried to mimic in this

experiment as faithfully as possible the conditions of the first (corridor) ex-

periment; hence, the experimenter walked through the area starting from the

bottom-left corner and stopped at each blue circles for 30 seconds and then
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Figure 3.4: Experiment 1: Sensor deployment and example location estimates,

moved along. Figure 3.5 shows the map of the space. The light-blue circle

points are the locations where she stopped and gathers data on her phone for

30 seconds. We had 100 stop points, 1 meter apart from each other.
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Figure 3.5: Experiment 2: Sensor deployment and example location estimates,
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Experiment 3

The last experiment was conducted in the living room of a small house in a

residential area, around 4.3 by 8.3 meters. The map of the space is shown

in the Figure 3.6. Just like the previous experiments, the experimenter was

moving around with a Galaxy S4 in her hand, starting from point number 1,

stopping for 30 seconds at each point and then moving on to the next point.

10 brown stars on the map show 10 BLE sticker which were glued to the wall

and the green circles show the possible location estimations coming from the

localization algorithm, that help to predict the final location as explained in

the sections 3.1.1 to 3.1.6.
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Figure 3.6: Experiment 3: Sensor deployment and example location estimates.

Results and Discussion

The results of the three experiments are summarized in Table 3.1. We were

quite disappointed to discover that no useful location estimate was obtained

through the FusedLocation API - in almost all cases, the received estimates

fell well outside the experiment area. Hence, when we report WiFi accuracy

in Table 3.1, we considered every point that WiFi gives us. But, after fusing

all the estimates, because almost all of the WiFi predictions were out of the

area, WiFi did not make any difference to the resulting accuracy. This reveals
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the fact that simple use of WiFi for localization such as the one via Google’s

API does not perform well in indoor environments.

Table 3.1: Results (in meters).

Experiment Devices Avg. Error

Experiment 1 BLE stickers/beacons 8.45

Experiment 1 WiFi via FusedApi 30.90

Experiment 1 Combination of WiFi and BLE 8.45

Experiment 2 BLE stickers/beacons 2.32

Experiment 3 BLE stickers/beacons 1.80

The poor result of experiment 1 with respect to experiment 2 and 3 makes

more sense when we realize that the corridor environment is a long and nar-

row area and because our algorithm needs at least 3 sensor points to apply

the trilateration, there will be very few sets of useful sensors for localizing

the target. In most cases, the subject is far from most of the BLE trans-

mitters. On the other hand, in both experiments 2 and 3, we have a wider

area, resulting in having more sets of 3 sensors forming a triangle for produc-

ing location estimates. Another reason for the variability in the accuracies

reported in Table 3.1 can be the difference in the building construction, which

can affect the signal strength. The building in the second experiment uses a

significant amount of structural steel beams, whereas the residential space is

almost entirely composed of non-metallic structure elements.

While it is true that we did not use a profiling approach for WiFi, as was

used for BLE, it is clear that the deployment of multiple WiFi access points

for the purpose of location estimations is not an economically sound approach

when inexpensive BLE devices abound.

As mentioned before, our experimentation with the Estimote+WiFi method

shows that it is not reliable for realistic environments and scenarios.

• Even though our experiment was conducted in a very sparse area and the

subject was moving artificially slowly, pausing in front of the Estimotes

with the smartphone in direct line-of-sight to the Estimotes, the resulting
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accuracy was relatively poor. This accuracy is bound to deteriorate if

the subject was to move normally in a typical home environment.

• Furthermore, this method relies on a rather stringent assumption of every

subject carrying a smartphone. This assumption is unrealistic especially

when the system is going to be used by elderly people, who may forget

to always carry their smartphone.

These observations led us to a new idea of changing the way we use Estimotes’

data, so that we don’t convert RSSI values to distance anymore. We also

decided to fuse Estimote sensor’s data with more reliable sensors like PIRs to

create a better system. This new method is explained in detail in section 3.2

3.2 The Estimote+PIR Method

Based on the experiments reported in the previous section on Estimote+WiFi

method, we realized that Google fused location API is not reliable inside build-

ings and Estimote stickers data can be very noisy especially when the occupant

is relatively far from the Estimote and the RSSI value is less than -70dBm.

Here in this section, we describe the Estimote+PIR method we developed to

alleviate these problems, for indoor localization in the SmartCondoTM .

Figure 3.7 provides the logical view of the Estimote+PIR method architec-

ture. The diagram depicts the two independent sensor-data collection paths

combined at the server. Note that the architecture could technically admit

more such independent simultaneously operating sensor feeds. The upper-left

branch (Estimotes) captures eponymous data collection carried out by the

smartphone device(s), and, in the future, by wearable devices. Estimote bea-

cons are attached to objects in the surrounding space, with a considerable

number of them attached to static objects (e.g., walls), or objects with tra-

jectories known in advance (e.g., doors). Estimote “stickers” are fairly small

and do not greatly impact the look-and-feel of the space; their interesting

shapes and colours could even allow them to be perceived as decorative ele-

ments. The collection of data (RSSI values) is performed by Android devices
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running a special-purpose application which is aware of all installed stickers

and their locations. When the device (smartphone or wearable), comes to the

vicinity of any of these stickers, the application recognizes their presence and

collects information about their RSSI and accelerometer signals. The RSSI

is reported in dBm, ranging from -26 to -100 dBm when the transmitting

power is set to a maximum of +4 dBm. The Android application streams this

data to the SmartCondoTM server every second. The format of the data sent

from the Android device to the server is < ti, deviceID, beaconID, RSSI >,

implying that at the specific timestamp ti, the person carrying the device

with ID=deviceID received a transmission with a strength of RSSI from the

Estimote with beaconID. Henceforth, we are using the terms deviceID and

pID interchangeably. Figure 3.8 shows the logical view of the data gathering

process in the SmartCondoTM for the Estimote+PIR method.

Figure 3.7: Structure of the Estimote+PIR method. PIR: Pyroelectric (“Pas-
sive”) Infrared. DB: Data Base. RPi: Raspberry Pi 3.

The lower branch captures the anonymous sensing carried out by the PIR

spot-type motion sensors placed on the ceiling. The PIRs can detect any move-

ment within their sensing area which is a diamond-shaped area, with the two

diagonals equal to approximately 1.75 and 2 meters. Groups of up to three

motion sensors are connected via wires to a nearby wireless node, running a

purpose-built firmware on a Texas Instruments MSP430 microcontroller us-

ing TI’s proprietary wireless module (CC1100). These nodes operate in the
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Figure 3.8: The data gathering logic in Estimote+PIR method. Motion sensors
sense data within the diamond area their facing. Estimote sensors send RSSI
values and by applying a threshold of -70 dBm, they sense objects within 1
meter distance to themselves. This threshold comes from an RSSI to distance
model that we calculated in section 3.1

900 MHz band, thus avoiding the heavily utilized 2.4 GHz band. The nodes

wirelessly transmit the sensor observations to a Raspberry Pi 3 (RPi 3) with

Internet access, which in turn uploads the data to a cloud-based server every

three seconds. The format of the data uploaded by the RPi 3 to the server

is < ti, data >, where the “data” element is a bitmap equal in length to the

number of motion sensors installed. A 1 (0) at the ith position of the data

bitmap implies that the sensor, corresponding to the ith index, detected (did

not detect) movement within its corresponding sensing area. From a practi-

cal perspective, we should mention that in our three installations to date we

have been able to hide the wires and the nodes inside ceiling tiles and behind

cabinets, in order to minimize their impact on the aesthetics of the home.

It is important to note here some interesting similarities and differences

between the two types of sensor data. Both types of data elements are times-

tamped with the time of the emitting device: the Android smartphone in

the case of Estimotes, and the Raspberry Pi in the case of the motion sen-

sors. Both include a payload: the < beaconID, RSSI > tuple in the case

of Estimotes, and the data element in the case of the motion sensors. Note

that the former includes information about a single beacon while the latter

26



composes information about all the deployed motion sensors encoded in a

bitmap. The most interesting difference between the two is the fact that Es-

timote data-transmission events are eponymous: each event includes the ID

of a person, pID, (carrying the corresponding device, deviceID) perceived by

the firing beaconID. This important difference characterizes motion sensors as

anonymous and Estimotes as eponymous.

Our Estimote+PIR method involves five steps, diagrammatically depicted

as a processing pipeline in Figure 3.7. The first two are specific to each type of

sensor, and focus on data pre-processing and the generation of a first location

estimate based only on the sensor(s) of this type. Should a new sensor type be

integrated into our infrastructure, a corresponding step sequence would have

to be developed specifically for this new sensor type. The remaining three

steps are general and focus on fusing the sensor-specific location estimates.

3.2.1 Data-Stream Pre-Processing

As shown in Figure 3.7, all “raw” data is pushed to the database. A first, pre-

processing step is applied to the raw data and the results are also stored in

the database. As we have already discussed, each type of data is pre-processed

differently. RSSI thresholding is applied to the Estimote data stream: a mini-

mum threshold of -70 dBm is used to select the RSSI readings that are “sig-

nificant” enough to be used for location estimation. This specific threshold

value was motivated by experiments reported in Section 3.1 and Figure 3.3:

roughly speaking, -70 dBm (or higher) RSSI strength suggests that the de-

vice is within approximately one meter of the transmitting beacon. In this

fashion, the RSSI sensing effectively becomes an eponymous proximity sensor.

The motion-sensor bitmaps are pre-processed to separate the individual mo-

tion sensor events. An additional pre-processing step is applied at this stage

to add information helpful to the semantics of subsequent activity recognition,

such as to label certain events as related to specific “actions” (e.g., an Estimote

beacon attached to a kettle is associated with the action of “cooking”).

The pre-processed data streams are then fed to the type-specific localiz-

ers. We recognize that given the various technologies that might co-exist, a
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general format for the localizers needs to be defined to address current and

future demands, and yet be able to integrate into the system easily. To this

end, Figure 3.9 shows the UML (Unified Modeling Language) design of the

sensor, event, and localizer classes, described in the following subsections. Fig-

ure 3.9 shows the base Localizer class with abstract methods for initializing

its sensors and handling their corresponding incoming events. These meth-

ods are implemented in the children classes (i.e., the MotionLocalizer and

EstimoteLocalizer), since each sensor type demands a different localization

algorithm. The Sensor class has an ID which is a common field for every

sensor. In addition, the EstimoteSensor and MotionSensor classes have an

associated location where they are installed, and a sensing polygon defining

the area within which they perceive movement. They implement the can see

method, which decides whether a particular location is covered by their sens-

ing area. The MotionEvent and EstimoteEvent classes are, children of the

Event class, and have a timestamp property. In the future, to add a new sen-

sor type, X, to the system, one would first have to add a set of corresponding

XEvent, XSensor, and XLocalizer classes, inheriting from Event, Sensor,

and Localizer, respectively. The new XLocalizer class would also have to be

added to the list of a system’s localizers to process incoming XSensor events

and feed a corresponding output location estimate to the subsequent fusion

steps.
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3.2.2 Sensor-Specific Location Estimation

Algorithm 1 Incoming event processing

1: procedure SensorFireHandler(ei)
2: if ei.type = ESTIMOTE then
3: if ei.RSSI > −70 then . //Pre-processing part for Estimote

events
4: confMap

(Lest)
ti,pID

= EstimoteLocalizer(e
(Lest)
i,pID

)
5: for pID in P do . //P is a set of all persons in system

6: motionMap = confMap
(Lms)
ti−1,pID

. //Most recent confMap
from Lms

7: if ei.person = p then
8: estimoteMap = confMap

(Lest)
ti,pID

9: else
10: estimoteMap = confMap

(Lest)
ti−1,pID

. //Most recent
confMap from Lest

11: end if
12: confMapti,pID

= Fuse(motionMap, estimoteMap, ti, pID)
13: end for
14: end if
15: end if
16: if ei.type = MOTION then
17: e

(Lms)
i = preProcess(Lms)(ei) . //e

(Lms)
i has a set of of fired sensors

18: for pID in P do
19: confMap

(Lms)
ti,pID

= motionLocalizer(e
(Lms)
i )

20: motionMap = confMap
(Lms)
ti,pID

21: estimoteMap = confMap
(Lest)
ti−1,pID

22: confMapti,pID
= Fuse(motionMap, estimoteMap) . //Produce

final confMap for pID
23: end for
24: end if
25: PostProcess() . //Disambiguate for all persons in system
26: end procedure

For the Estimote+PIR method on SmartCondoTM , we have adopted the

methodological assumption that individual localizers should be developed to

work with each specific data stream producing a location estimate. Our

location-estimate synthesis algorithm is general enough to take into account

any number of such estimates and synthesize them into an overall location es-

timate. This design decision enables the extendibility of our platform: a new

sensor-data stream implies the need for a new localization algorithm whose
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output is a location estimate that can be fed into the existing synthesis step.

In this study, an Estimote-based Localizer and a Motion-Sensor-based (anony-

mous) Localizer are described.

As shown in Figure 3.9, every localizer should implement the same set of

behaviours, including (a) initialization of the sensors whose data it consumes

and (b) handling a data-transmission event. The key characteristic shared

by all localizers is that their output should be described as a function of a

“confidence” (or probability) metric over the space, which is represented as

a two-dimensional grid of locations. That is, each localizer Lx produces as

output a < ti,m
(Lx)
xy , pID > tuple. The m

(Lx)
xy is a positive metric (the larger

the value, the more confident the localizer is about its estimate) that the

individual pID is at location (x, y) at time ti. If a localizer is anonymous, the

output is independent of pID (i.e., the same for any candidate pID).

Algorithm 1 describes how each new event is processed upon arrival. The

term “confMap” confidence map refers to the location estimates produced by

each individual localizer, and by the subsequent fusion step. A number of con-

fidence maps are illustrated in Figure 3.10. A localizer relying on anonymous

sensors (e.g., motion sensors) produces a single confidence map, which is akin

to a heat map of the space, with the color of each location corresponding to the

localizer’s confidence that “some” occupant—any one of the known occupants

in the space—is in that location. A localizer relying on eponymous sensors

(e.g., Estimotes) produces a set of confidence maps, each one corresponding

to an individual occupant, with a specific pID.

The Estimote Localizer produces the confidence map according to Algo-

rithm 2. ti and pID denote the timestamp of the incoming sensor event (e
(Lest)
i,pID

)

and the person whose movement caused the event. As mentioned above, the

sensing area of the Estimote beacons and stickers, given the -70 dBm thresh-

old, is approximated by a circle of diameter 1 m around each Estimote. The

motion-sensor localizer generates a confidence map as described in Algorithm

3 every time it receives a new motion-sensor event, e
(Lms)
i , containing informa-

tion about all the motion sensors that fired in that timestamp.
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Algorithm 2 Estimote Localizer

1: procedure EstimoteLocalizer(e
(Lest)
i,pID

)
2: for all (x,y) do . // All (x, y) in the area map

3: if (x, y) ∈ SensingArea(e
(Lest)
i,pID

.sensorbeacon ID) then . //If sensor
in the event sees (x, y)

4: mx,y = 1
5: else
6: mx,y = 0
7: end if
8: confMap

(Lest)
ti,pID

(x, y) = mx,y . //Set confidence value for point
(x, y)

9: end for
10: return confMap

(Lest)
t,p

11: end procedure

3.2.3 Location-Estimate Fusion

Depending on the algorithm it uses to compute its corresponding confidence-

map for its location estimate, each localizer may use a different range of val-

ues in the representation of their confidence. In order to construct a common

confidence value across all (two, in the case of this experiment) contribut-

ing localizers, the third step in the process involves a weighted summation of

the input confidence maps, corresponding to each pID. When no eponymous

sensors have been deployed in the space, the scheme reverts to a single con-

fidence map that recognizes the likely locations for all individuals, without

distinguishing among them.

The fusion step is simply the summation of the confidence values across

the entire x, y-space using a weighted sum. Anonymous values are added to

any eponymous values, but eponymous values can only be combined with the

corresponding eponymous values (i.e., values for the same person pID). The

weights are described in 4 as EstimoteReliability and MotionReliability. In

this study, their values were set to 0.7 and 0.9, respectively; these values

are based on the observed accuracy of the Estimote and motion sensors in

previous studies in [24], [36], which revealed that PIR motion sensors can be

more accurate than Estimotes.
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Algorithm 3 Motion Localizer

1: procedure MotionLocalizer(e
(Lms)
i )

2: for all (x,y) do . // All (x, y) in the area map

3: for all sensor in firedSensorSet do . firedSensorSet is inside e
(Lms)
i

4: if (x, y) ∈ SensingArea(sensor) then
5: mx,y = 1
6: else
7: mx,y = 0
8: end if
9: end for

10: confMapMotion
ti

(x, y) = mx,y . //Set confidence value for point
(x, y)

11: end for
12: return confMapMotion

ti

13: end procedure

3.2.4 Reasoning about Outages and Outliers

As discussed above, the purpose of the fusion step is to merge the most recent

location estimates produced by each distinct localizer into a single location

estimate. However, either due to sensor malfunction or channel interference,

one of the localizers may experience an “outage” (i.e., it may be silent for a

long time). This case is depicted in Figure 3.8. In this case, as new location

estimates are produced by the other localizers, they will have to be fused with

ever-older estimates. In this case, Estimote+PIR method applies a confidence-

reduction penalty to the fused estimate in order to recognize the fact that the

two sources of evidence are out-of-sync and they may represent different states

in the real world.

The function ReduceConfidence in Algorithm 4 receives as input the set

of latest confidence maps from all localizers, and computes the time lapsed

between the oldest and the most recent, tdiff = tmax − tmin. It returns as

output the value of 1
tdif+0.2

as the confidence penalty, which is applied as a

multiplier to each location in the fused confidence map. This value is selected

so that older confidence maps will be penalized more.
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Algorithm 4 Location-Estimate Fusion

1: procedure Fuse(motionMap, estimoteMap, ti, pID)
2: ER = EstimoteReliability
3: MR = MotionReliability
4: confMap = create empty map
5: [confidencePenalty(Lest), confidencePenalty(Lms)] =
ReduceConfidence(estimoteMap,motionMap) . //The above line
calculate s confidence penalty for confMaps of Lest and Lest

6: lastLocationEstimate = getLastLocationEsimate(pID) . //Last
location estimate for pID

7: for all(x, y) do

8: estimoteConf = m
(Lest)
ti,pID

(x, y) ∗ ER . // Multiply weights to

confMap(Lest)

9: motionConf = m
(Lms)
ti,pID

(x, y) ∗MR . // Multiply weights to

confMap(Lms)

10: confMapti,pID(x, y) = estimoteConf +motionConf . //Sum the
confidences

11: distance = A∗.F indPathLength(lastLocationEstimate.location, (x, y))
. //Find distance

12: speed = distance
ti−lastLocationEstimate.time

. //Calculate speed
13: if speed > speedLimit then
14: confMapti,pID

(x, y)∗ = speedPenalty . //Multiply speed
penalty

15: end if
16: end for
17: return confMapti,pID

18: end procedure

Next, the method determines if the displacement by which the individual

has potentially moved—from the last timestamp to the current one—is a po-

tential “outlier”. This information is important for the purpose of rejecting

the result of misfiring sensors that would result in placing the person at an

unlikely distance from the previous location estimate. Let us call the weighted

sum for person pID at time ti as spID,x,y(ti); then, the output location estimate

(x, y) for pID is the average of arg maxx,y∈Grid spID,x,y(ti), where Grid are the

square blocks in the area map.

The distance between successive location estimates is calculated with the

help of a A∗ algorithm [16], using a finer location grid than the grid used

for localization purposes. In the current configuration of our Estimote+PIR
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method, the A∗ algorithm runs on a 0.2 m grid, compared to the localization

process which assumes a 1 m grid. The A∗ grid honours the spatial constraints

imposed by the obstacles (i.e., not going through walls). The choice of a fine

grid for the A∗ search is motivated by the need to capture features of the space

that might hinder the movement of an individual. Using A∗ is motivated by

our preference to include search algorithms that could work in a dynamic

environment. Realistically, individuals and (some) obstacles may be moved

(and tracked); therefore, spaces are dynamic enough to preclude the use of

static shortest-path algorithms. A person’s potential speed is calculated based

on the distance between the current and last location estimates and the time-

difference between them; if the calculated speed is more than the normal speed

of a walking person (approximately 1.3 m/s), the confidence of the cells in the

new location estimate is reduced by a factor of 0.5; these steps are incorporated

in Algorithm 4. The A∗ algorithm starts from the previous location estimate

(x, y)i−1,pID at time ti−1 and searches for the shortest path to the current

location estimate(x, y)i,pID . To speed up the process, at each point pomiddle in

the middle of the search, as soon as the length of path(x,y)i−1,pID
→pomiddle

plus the

Euclidean distance between pomiddle and (x, y)i,pID is more than normal speed×

(ti − ti−1), the search stops and the confidence map is penalized. These steps

are shown in lines 12–16 in Algorithm 4.

3.2.5 Disambiguation of Anonymous Persons

Let us consider the case where only motion sensors are utilized; in that case,

the confidence maps produced will contain areas where the motion-sensor lo-

calizer identifies the potential presence of “some” individuals. In principle, the

number for these areas will be less than or equal to the number of persons in

the space: if two or more people congregate in roughly the same location, then

there will be a single area corresponding to their presence as a group. This is

exactly the scenario investigated in [4].

If all individuals are also identified through an additional technology (such

as in the case where all individuals are carrying smartphones and are rec-

ognized in the vicinity of Estimotes), then the sensor-fusion step results in
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merging the evidence collected from the various sensors in a single confidence

map, where all areas are annotated with a person pID to indicate some confi-

dence in the presence of this specific person in the area.

There is yet another scenario: when one of the occupants is not tracked

by anything other than the motion sensors; this situation may occur either

because of an outage in Estimote data-transmission events, or because the

occupant is not carrying any smartphone at all. This case happens in Figure

3.10, where person 1 carries a smartphone and is associated with the confidence

map of Figure 3.10c, while person 2 is localized only by motion sensors and

corresponds to the confidence map of Figure 3.10d. Then, it is possible to

disambiguate the “anonymous” occupant (person 2 in Figure 3.10) with a

post-processing step given that we have estimated where the other participant

is located. This process results in Figure 3.10f for the second participant. This

step involves a Gaussian mixture model (GMM) that treats the normalized

confidence values of the confidence map as probabilities and clusters them. The

GMM is not provided with any information about the number of individuals

present, and attempts to fit the best model possible [13]. In our example,

in Figure 3.10d, the GMM returns two clusters, corresponding to the two

dark red areas. Then, the confidence of the points in the cluster that has a

distance smaller than 0.5 m to the areas that have been annotated with the

pIDs of the smartphone-carrying individuals (Figure 3.10c) is reduced, hence

“subtracting” from the confidence values, and the remaining cluster in the

confidence map, corresponding to the anonymous person (person 2) will have

a higher probability of them being there, resulting in the confidence map at

Figure 3.10f for person 2. This process is performed as the very last step of

Algorithm 1.

3.2.6 Evaluation and Results

Twenty-six participants were recruited to spend one two-hour shift—either

alone or in pairs (seven pairs)—in the SmartCondoTM . The participants were

asked to follow a scripted sequence of activities (i.e., an activity protocol).

This protocol started with the subjects placing their personal belongings in

36



the entrance closet; followed by performing some exercises in front of a Kinect;

simulating personal-care activities including toileting and bathing; preparing a

meal, eating it, and cleaning up; simulating doing laundry; playing some games

on a tablet, and watching TV. Some activities were simulated (e.g., personal

care, dressing) and others were real (e.g., cooking, ironing, exercising). For the

two-participant sessions, the protocol was the same for both subjects, with the

exception that the order of the activities was slightly modified, and that both

participants were involved in the meal preparation and TV-watching activities.

Each of the activities in the protocol was scripted in details as a sequence of

smaller tasks. For example, the instructions for the meal-preparation activity

were to get the frying pan from the cabinet, bring eggs from the fridge, get a

spoon, stand in front of the kitchen island, cook scrambled eggs, etc. A tablet

was provided to each participant, running an application that prompted them

to perform the next step; when they were done with a specific task, they had

to tap a “continue” button to go to the next task. In this manner, we can be

sure that all the participants followed the exact same activity protocol. The

participants were asked to wear an armband with a smartphone on their arm,

either a Galaxy S4 or a Nexus 5 running Android 5, so that the smartphone

was always with them and it did not interfere with their movement.

A simplified floor plan of the SmartCondoTMspace is shown in Figure 3.11.

The red stars indicate the locations of the Estimote stickers that were attached

to static objects, which cost approximately $10 each. We also attached 12

Estimotes on movable objects used for the script activities, such as a cup, a

frying pan, the garbage lid, etc. Moreover, 14 PIR motion sensors, each 3 of

them connected to a node (built from scratch in the network’s lab at a cost

of $20–30 each) were installed on the ceiling, with a Raspberry Pi 3 ($50)

nearby to receive the motion sensor events and stream them to the server.

The smartphone used costs approximately $150. The phone batteries last

approximately 6–7 hours when the accelerometer and magnetometer on the

phone are used and the events are streamed to the server.

In keeping with the idea that the sensor-specific localizers can be selected

from a wide range of offerings, the actual computational complexity introduced
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by our contribution is due to the fusion and post-processing steps. The fusion

step involves the addition of the confidence values of different confidence maps

produced by different localizers for each individual occupant. This addition

takes place over a discretized grid. Hence, if we have “P” individuals, “L”

localizers, and “B” grid points in the area, the complexity of the fusion step

is O(P × L×B). Then, during the post-processing step, the process of confi-

dence reduction for the grid points that are too far from the previous location

estimates for each person is performed in O(P ×B). Finally, the disambigua-

tion of anonymous persons involves two phases. First, the confidence maps for

each person are clustered together to determine the location-estimate areas

(O(P ×B)). Next, for each person “p” in the space, for each grid point “b” in

the confidence map, the disambiguation method checks if “b” is inside another

person’s location estimate area, and if so, the confidence of “b” is reduced; this

last part can be done in O(P 2×B). As a result, the whole process is completed

in O(P×L×B+P 2×B) and since the number of localizers is typically a small

constant, decided a-priori and independent of P, the time complexity is essen-

tially O(P 2 × B). We remark that the generation of each localizer estimate

reflected in L can be a significant overhead and varies among localizers.

Extracting the Ground Truth

To collect ground-truth data, the participants’ movements and actions were

video-recorded by six cameras, also shown in the diagram of Figure 3.11. We

subsequently analyzed these videos to annotate them with the ground truth,

regarding the participants’ activities and locations.

The video annotation was performed manually by myself. I reviewed the

videos and recorded the locations of each participant at each point in time,

similar to the process outlined in [8]. Although this procedure is bound to

produce inaccuracies with respect to the precise timing of each activity and

the exact location of the participants, it is currently the only methodological

option, given the complexity of the activities and the maturity of current

video-analysis methods.

To alleviate the complexity of the ground-truth video-annotation task, the
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experiment script given to participants included instructions for them to stand

on marked locations on the floor while conducting specific tasks. Not surpris-

ingly, our participants did not follow the instructions very precisely, and for

most of the time, they were at unmarked locations for which we do not have

exact [x, y] coordinates. During the video-annotation process, we estimated

those coordinates based on their location relative to known landmark points

around them. Another common source of error in manually establishing the

ground truth is introduced when recording the participants’ locations while

moving: those locations are semi-automatically estimated through interpola-

tion between known timestamped locations.

Another problem with generating the ground truth was the fact that we had

three (sometimes four) different sources of timestamps: (a) the smartphones

carried by the participants, which send the Estimote events to the server; (b)

the database timestamps of the motion-sensor data-transmission events; and

(c) the video-recording timestamp. While all those clocks were synchronized

at the level of timezone, date, hour, and minute, they were out of sync in

terms of seconds. As a result, the timestamps of the ground truth and the

inferred location and activity may differ from each other by as much as 60

seconds. To mitigate this problem, we use a time window of length T =

1, 30, 60 seconds when determining the corresponding ground truth point for

each of the system’s estimates at each time (see Equation 3.8).

Errorti = minti+T
ti−T‖l

est
ti
− lgtti ‖ (3.8)

In the above equation, lestti
is the estimated location of an occupant at time

ti; l
gt
ti is the actual location of the same occupant at the same timestamp,

and T is the window’s length. Then to calculate the total error and standard

deviation for each person, Equation 3.9 is used for all estimates in all the

ConfMaps generated during a session for each person.

Errortotal = avgti(Errorti) (3.9)
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STDtotal = STDti(Errorti) (3.10)

There are some computer vision methods, like the one in [33] who try to

localize a moving robot in a space with help of a Monte Carlo algorithm. We

hope that in the future, we can use these methods to simplify the task of

ground truth extraction.

Results and Discussion

In this section, we examine the performance of our Estimote+PIR method.

We report and discuss the location-estimate errors, calculated based on the

formula in Equation 3.8, for single-participant sessions and two-participant

sessions under different knowledge assumptions.

Table 3.2: Localization error for single-participant sessions, using motion-
sensor and Bluetooth Low-Energy (BLE)-Estimote data. All the measure-
ments are in meters.

window size session 1 1 session 1 2 session 1 3

mean std dev mean std dev mean std dev

1 sec 1.92 1.34 2.35 1.80 2.88 1.72

30 sec 1.52 1.09 1.88 1.53 2.59 1.73

60 sec 1.31 0.86 1.71 1.39 2.50 1.72

Table 3.3: Localization error for single-participant sessions, using motion-
sensor data only. All the measurements are in meters.

window size session 1 1 session 1 2 session 1 3

mean std dev mean std dev mean std dev

1 sec 2.28 1.35 2.31 1.54 3.28 1.14

30 sec 1.79 1.01 1.77 1.19 3.01 1.45

60 sec 1.58 0.73 1.60 1.05 2.93 1.45

Tables 3.2 through 3.6 show our localization results for six of the 2-hour

sessions in our experiment: three of these sessions involved a single partici-

pant and the other three involved two participants. The name of the sessions
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used in all tables follows the convention “session1 i” to indicate the i-th sin-

gle participant session. Similarly, “session2 i” is the i -th session with two

participants.

Tables 3.2 and 3.3 report the average error of the Estimote+PIR method in

three single-participant sessions, under two different conditions: (a) using both

motion sensors and Estimotes, and (b) using motion sensors only. Comparing

the two tables, one notices the improvement in the localization accuracy that is

possible due to the Estimotes. Estimotes improved the localization accuracy by

approximately 20 cm on average. This is due to two reasons. First, the union

of all the areas covered by the Estimotes is larger than the area covered by

the motion sensors (Figure 3.11). Second, and more interestingly, the sensing

area of each individual Estimote—given our -70 dBm threshold—is relatively

smaller than that of the motion sensors, since they are mostly attached to

the walls and detect targets within the semi-circle around them. Therefore,

when the Estimotes recognize an occupant in their sensing area, they do so

with high confidence, and the location estimate becomes more accurate. The

standard deviation reported in Table 3.2 is higher than that of Table 3.3. This

is because, unlike motion sensors, Estimote errors are not bounded; although

we are assuming that RSSI values higher than -70 dBm imply that the target is

within one meter of the Estimote, that may not be always the case. According

to our previous study in section 3.1 [12], the RSSI value can vary drastically

(over a range of 10 dBm or more), even when the target is stationary at a fixed

distance; this did not happen frequently in our experiment (so the accuracy is

still better when adding Estimotes), but it is sufficient to make the standard

deviation slightly higher (28 cm on average when window size was 1). In other

words, the coverage area of the Estimote thresholded at -70 dBm is “fuzzy”.

In contrast, a motion sensor firing means that the individual is within the

(bounded) coverage area of the motion sensor.

Tables 3.2 and 3.4 report the average error of Eimote+PIR method in three

single-participant sessions and three two-participant sessions, respectively. It

is easy to notice that this method exhibits the highest accuracy (and smallest

error) when configured with a time-window of 60 seconds. Intuitively, the
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coarser the time granularity, the smaller the error. The average localization

error when the window size is 60 seconds is somewhere between 0.38 m and 0.64

m (0.5 m on average based on the results from Tables 3.2 through 3.6), better

than when a window size of 1 second was used. This fact shows the impact

of unsynchronized sensor events on the quality of the method’s estimates.

Our choice to use a 60-second window is well motivated by the fact that our

data-emitting sensors and devices are not synchronized at the granularity of a

second.

Table 3.4: Localization error for two-participant sessions, using motion-sensor
and BLE-Estimote data, with both participants holding phones. All the mea-
surements are in meters.

window size session 2 1 session 2 2 session 2 3

mean std dev mean std dev mean std dev

1 sec 2.42 1.43 2.39 1.70 2.17 1.80

30 sec 2.01 1.19 2.11 1.57 1.82 1.53

60 sec 1.87 1.11 2.00 1.51 1.65 1.37

Table 3.5: Localization error for two-participant sessions, using motion-sensor
and BLE-Estimote data with only one participant holding a phone. All the
measurements are in meters.

window size session 2 1 session 2 2 session 2 3

mean std dev mean std dev mean std dev

1 sec 2.53 1.43 2.49 1.83 2.33 1.77

30 sec 2.06 1.00 2.22 1.73 1.94 1.52

60 sec 1.92 0.90 2.1 1.67 1.77 1.35
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Table 3.6: Localization error for two-participant sessions, using BLE-Estimote
data only, with both participants holding phones. All the measurements are
in meters.

window size session 2 1 session 2 2 session 2 3

mean std dev mean std dev mean std dev

1 sec 2.31 1.26 2.38 1.49 1.91 1.36

30 sec 1.92 1.08 2.12 1.38 1.61 1.07

60 sec 1.81 1.06 1.98 1.34 1.46 0.97

For the two-participant sessions, the location-estimation error when both

participants wore a smartphone on their arm is reported in Table 3.4. Never-

theless, we are interested in the performance of this method when only some of

the participants carry smartphones. This is important for assisted-living facili-

ties, where older adults are unwilling to wear any sensors or carry a smartphone

but their caregivers typically have one. To simulate this scenario, we ran two

different experiments for each session, ignoring the data emitted by one phone

of a participant at a time, and we applied our location-estimation method to

the remaining data to examine how effective our method’s disambiguation fea-

ture is in this reduced-knowledge condition. The average result from the two

experiments for each session are reported in Table 3.5. Comparing the results

between Tables 3.4 and 3.5, we note a relatively small decline, which provides

evidence for the robustness of our method. The participant who does not carry

a phone—and as a result is not sensed by the Estimotes—is localized by the

motion sensors only, which is possible because the sensing area of each motion

sensor is larger than that of the Estimotes: motion sensors sense elements

within a diamond around them with the diameter of approximately 2 m, while

the Estimotes—due to their on-wall placement—sense within a semicircle of 1

m radius.

For the two-person localization, to the best of our knowledge, all the pre-

vious studies required both subjects to wear some kind of sensor or tag, or to

carry a smartphone. A 2013 study [38] reported 1.49 m accuracy, but because

their method was device-less, it could not disambiguate the occupants. Mak-
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ing even more stringent hardware assumptions, a 2009 study [15] reported an

error of 1 cm only, but required RF transmitters and receivers and assumed

sensors wired to the transmitters carried by the occupants. In this scenario,

the batteries of sensors mounted on different body parts lasted only about

1–2 hours, and the coverage area of each transmitter was only 3 m and was

sensitive to the presence of metal objects in the area. Clearly, even though

the obtained error is quite impressive, the method cannot be applied in any

real-world scenario.

In our experiment, we were able to achieve almost the same accuracy when

only one of the two participants carried a smartphone (Tables 3.4 and 3.5).

When space was equipped with motion sensors, our Estimote+PIR method

was able to still infer the likely locations of the two participants and relies on

the single source of eponymous data to disambiguate those locations.

Table 3.6 presents the errors obtained for the same two-participant ses-

sions when only Estimotes were used, without taking any motion sensor data

into account. Remarkably, the location estimate errors are better than those

reported in Table 3.4 by approximately 10 cm. This is due to the larger area

coverage resulting from the union of the individual covered areas by the de-

ployed Estimotes—approximately 40 m2—compared to the 26 m2 collectively

covered by the motion sensors.

In a simple mutation experiment, we eliminated every other Estimote sen-

sor and recomputed the location-estimate error: the average error for both

participants for session 2 3 became 3.24 m (for a time window of 60 seconds),

which is worse than the result reported for the same session in Table 3.4 or 3.6.

This confirms our intuition that the superior accuracy of the Estimotes-only

location estimates is an artifact of their deployment density.

Besides evaluating the accuracy of the location estimates produced by our

Estimote+PIR method, we also analyzed its confidence. As we explained

above, the output of the localization process is a confidence map for each per-

son at each point in time, such as the one shown in Figure 3.10. Based on

this confidence map, we also computed an overall confidence measure for the

estimates produced by our method. As we discussed before, the confidence
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maps assign a value to each point in the monitored space, shown by colours in

Figure 3.10: the deeper the colour, the more confident our method is that there

is someone—whether anonymous or eponymous—in that point. The overall

confidence measure we discuss here is the maximum of these values over the

whole map. Our hypothesis is that the high errors (more than 4 m) are due to

prolonged periods without data. Indeed, there were time periods throughout

the sessions during which the server did not receive events from our sensors

despite the participants’ movements. The facility where the experiments were

conducted is awash with RF interference, and possible network throughput

deterioration and even outages are within the realm of possibility. Indeed,

our hypothesis on the origins of the inaccuracy and low overall confidence is

validated in Figure 3.12. This Figure demonstrates that the method’s confi-

dence is very low when the error is high, which implies that our method is

“aware” of its blind spots. More precisely, when our Estimote+PIR method

lacks input from sensors, based on Algorithm 1, the most recent confidence

map is used but referring to Algorithm 4, the system reduces the confidence

values. Hence, if the participant has been moving to a new location during

the period for which the server did not receive any data-transmission events,

the confidence would be low. In Figure 3.12 you can see this effect where in

case of higher error for a long period of time (shown in the red-dotted areas

in Figure 3.12a), the corresponding confidence measure is low (shown in the

red-dotted areas in Figure 3.12b).

Finally, we conducted a preliminary analysis of our Estimote+PIR method’s

effectiveness for activity recognition. There is a fairly limited set of activities

that we are able to detect in our data. By attaching Estimotes on the objects

shown in the left column of Table 3.7, we are able to recognize basic activities

relying on the person’s interaction with the object in question. For example,

when the Estimote attached to the iron is recognized by a participant’s smart-

phone, our method infers that the person is ironing. Several basic activities

are grouped under a single “activity” header. For example, using an iron or

a laundry basket or a washer or a dryer implies that the person is “doing

laundry”. During all of the abovementioned sessions, our method was able to
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correctly detect 70% of the activities that the occupants were doing.

Table 3.7: Activities recognized based on Estimotes attached to objects.

Basic Activities Activities

Use iron, Use ironing board,
Move laundry basket, Use dryer

Laundry

Use dustpan, Use broom Brooming

Use TV remote Watching TV

Use kettle, Use frying pan, Use cup,
Open/Close kitchen cabinet,

Open/Close fridge, Open/Close garbage lid
Cooking/Eating/Washing Dishes

Take medication Medication
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(a) Initial confidence maps produced
by motion localizer (right) and esti-
mote localizer (left) for participant 1

(b) Initial confidence maps produced
by motion localizer (right) and esti-
mote localizer (left) for participant 2

(c) Confidence map for participant 1
after fusion

(d) Confidence map for participant 2
after fusion

(e) Final confidence map for partici-
pant 1

(f) Final confidence map for partici-
pant 2

Figure 3.10: Confidence maps for 2 persons with motion sensors, and Esti-
mote events for person 1 only. Figure 3.10a, 3.10c, and 3.10e correspond to
participant 1, and Figures 3.10b, 3.10d, and 3.10f correspond to participant 2.
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Figure 3.11: Layout of the SmartCondoTMwith positions of static Estimote
stickers and PIR motion sensors.

(a) Error of the localization for one of the single occupant sessions.

(b) Confidence of the system on localizing one of the single occupant
sessions.

Figure 3.12: (Figures a) and (b) are from the same single occupant session.
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Chapter 4

The SmartCondoTMSoftware
Architecture

The design we mentioned in section 3.2 was used at the development phase

and when the experiments have been done. After testing the system and

verifying its effectiveness, we evolved its software architecture so that it meets

the following requirements

• Real-time location estimation: It needs to localize the occupant,

based on the events receives from sensors, in a real-time manner.

• Scalability: There are three types of scalability: size scalability, ge-

ographical scalability, and administrative scalability. We will describe

how our system provides any of these types of scalability later in this

chapter.

• Configurability: There are many parameters in the methodology we

used for indoor localization that should be easy to alter in the future.

• Easy of Deployment: Because of the nature of the system, it needs to

be re-deployed in different buildings with different sensors.

This chapter explains how we changed our system described in section 3.2 to

have the above characteristics. Figure 4.1 shows the architecture of the final

system. With this design, the Algorithm 2 and Algorithm 3 reside in their

own separate web services, and the Algorithm 4 and the post-processing step
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are in smart condo web service. Finally, the Algorithm 1 is divided into two

parts separated into the two localizer web services.

For the system to be real-time, we observed that it takes an average of 4

seconds to localize 2 persons in the environment at each timestamp. As we

have our sensors sending events approximately every 1 second, we decided to

make the system run the localization every 3 seconds so that we will not lose

as much data and the system will be acting almost real-time.

For scalability, our system provides geographic scalability when it comes

to adding new types of sensors. Each type of sensor will send its events to

the corresponding web services through a RESTfull API. By separating the

localizers, in the future, one can create a new localizer for a new set of sensors

that receives events from its dedicated sensors and then perform its own algo-

rithm. This is good in many aspects. First, new localizers do not need to be

written in the programming language that the current system is implemented

with (python), and doesn’t even need to be on the same server computer as

any of the current localizers. Second, we believe that different sensors have

different characteristics and the information we can receive from them is not

the same. With the current design of the software, the functionality of the

new sensor’s localizer can be completely different from the other localizers.

The only thing that matters is that the output of all localizers should be

of the same format. This output will be sent to the smart condo web service

somewhere else on the cloud. The communication of localizers with the smart

condo web service is through another RESTfull API which will be discussed

later in this chapter. This API also is provided to any visualization system

which wants to request location estimates from the system and visualize it.

All these works has made the software very scalable in terms of adding new

sensors and new visualizer systems.

The size scalability of our system is related to the number of occupants

increases. According to the time complexity calculated in section 3.2, our

software will be polynomially scalable when we add new occupants. Finally,

the administrative scalability of our system depends on its ability to be de-

ployed in multiple locations. Right now, the preferred way to do that is by
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installing multiple systems, one per each new space. This is not the optimal

way of scaling our system and we believe that in the future, we can modify

some small parts of the design in order to add multiple spaces in the same

system.

For the system to be configurable, every parameter in the code is moved

to configuration files. These parameters include the size of the grid we use for

localizing a person in a building, the step size of the A∗ algorithm, etc.

For the system to be easy to deploy, all the information about the map of

the space, the sensors installed in the area, and the URL’s for the smart condo

web service, where the localizers should connect to, are in the configuration

files that are in localizers and smart condo web services. The devices that

should communicate with the localizers (Raspberry Pi and Android phones)

will request for the configuration files once they want to start working with

the system and will receive the information they need about the sensors that

they should be listening to.

The smart condo web service is also responsible for saving all the raw events

and the output location and activity estimates from different localizers and the

fused confidence maps. The design of the DataBase is described in the next

section.

4.1 DataBase Design

We decided to use a relational (or SQL) database (Postgres) mainly because

of three reasons. First, we implemented the scheme of the database to be

general for different technologies. For example, the table of sensors is defined

to be able to contain various types of sensors so that adding new sensors in

our system means adding a new row to the sensor table and not a new table.

As a result, our system only needs to be scalable vertically which is suitable

for SQL databases. Second, the queries that we needed to use in our system

are handled much faster in SQL databases; and third, because of the high load

of data being streamed to our server, an SQL database was a better choice for

our intended applications.
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Figure 4.1: Final design of the SmartCondoTMsystem

The list of tables of our database are as following:

• Sensor: This table has the information about different sensors in the

environment. Each row of the table has the following fields:

– hash: This is a unique ID for each sensor.

– sensor type: The type of sensors like ”Estimote” or ”Motion” in

our case.

– x, y, z: The location of the sensor in the environment. This values

can be empty when a sensor is used only for activity recognition

and does not have a fix location, e.g. an Estimote attached to a

book.

– attached object: The name of the object that the sensor is at-
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tached to.

– sensing area: The corners of the polygon that the sensor can sense

when there is a person in there.

– description: A text including more useful information about the

sensor.

• Person: This table has the information about each person in the envi-

ronment who is registered to be localized by our system. Each row of

the table has the following fields:

– hash: A unique ID for each person.

– name: The name of the person.

– device ID: The ID of the device that this specific person uses.

– speed: The speed of the person when he/she is walking in the area.

• Event: This table has the information about each event that we receive

from any sensor. The format of this table is designed to be general for

every sensor event possible. Each row of the table has the following

fields:

– hash: A unique ID for each event.

– source: Where the event comes from, e.g. ”Estimote” or ”Motion”

in our study.

– timestamp: The time of the event in Unix time format.

– sensor: This is a foreign key to one of the rows in Sensor table,

indicating which sensor the event is coming from.

– person: This is a foreign key to one item of the Person table,

indicating for which person this event is. This value can be empty

too because some of the sensors, e.g. motion sensors, cannot identify

the person within their sensing area.

– data: For the purpose of making the Event table general for all

possible sensors, the information we receive from each sensor is in
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this field in a JSON format. For example in our case, the data field

of the events coming from Estimote sensors has information about

RSSI, Accelerometer, temperature, etc.

• Confidence Map: As mentioned before, the output of each localizer

and the whole system is a confidence map for each person at each times-

tamp. Each row of the table has the following fields:

– hash: A unique ID for each event.

– source: Where the confidence map comes from, e.g. ”Estimote”

or ”Motion” or ”fusion” or ”post-process” in our study.

– timestamp: The time of the confidence map in Unix time format.

– person: This is a foreign key to an item of the Person table, indi-

cating for which person this confidence map is.

– map: A JSON format data which has an array of grids locations

and the confidence value for the specific person being there.

– source reliability: The reliability of the localizer which is used

when fusing confidence maps together.

– estimate confidence: The confidence of the generated estimates.

– x, y: The location of the person.

• Activity: Each row of the table has the following fields:

– hash: A unique ID for each event.

– source: Where the activity inference comes from, e.g. ”Estimote”

in our study.

– timestamp: The time of the activity in Unix time format.

– person: This is a foreign key to an item of the Person table, indi-

cating for which person is this activity.

– Activity: A text indicating what the person is doing.
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4.2 Web API Design

According to the Figure 4.1, the system has 3 APIs, one for the localizers to

communicate with the smart condo web service and one for the Android appli-

cation to communicate with the Estimote localizer and one for the Raspberry

Pi to communicate with the Motion localizer. This section describes these 3

APIs.

The smart-condo service exposes an API to the localizers, with the follow-

ing operations.

• Add event: The localizers will send the raw events coming from sensors

to the smart condo service to be saved in the database. This operation

receives a timestamp and the data of the event in the form of JSON.

• Get config: The localizers get the configuration files from the server

with this operation. It receives a sensor type from the localizer (e.g.,

Estimote or Motion in our case) and in the results, sends sensors’ infor-

mation, the map of the space, and the network configuration data which

tells the localizer differents URL addresses for the API.

• Add person: The Estimote localizer sends information of the new per-

son registered by his/her smartphone to the smart condo. This informa-

tion includes device ID and the username. In return, the server sends

the person hash ID to the phone which will be used in the future com-

munications.

• Add confidence map: Different localizers send their output confidence

maps in the format of a JSON to the server. This JSON value has

the information about the timestamp, person, x and y location, the

confidence of the estimate, activity, and the confidence map. Any of

these values except timestamp can be empty. For example, the localizer

may have only the activity information of an occupant, or in case of the

motion sensor localizer, the person can be empty.
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• Add stats: The Raspberry Pi sends its state every 10 minutes to the

smart condo service containing information about its battery level, disk

and memory space.

The Estimote localizer provides an API to the Android application and

the Motion localizer also provides an API to the Raspberry Pi. The APIs are

almost identical, supporting two operations.

• Add event: The Raspberry Pi/Android application sends motion sen-

sor/Estimote sensor events to the localizer. The parameters are a times-

tamp and a data in the format of a JSON string containing the informa-

tion about the event.

• Get config: For the Motion localizer, the Raspberry Pi requests the

configuration file including sensors information and the network URLs

information from the localizer that is returned in a JSON format.

For the Estimote localizer, the Android application sends its device ID

and the user’s name to the localizer to register the person and in re-

turn, receives the configuration file including the map coordinates, the

Estimote sensors information, and the network URLs information.

When a new sensor type needs to be added to the system, a new localizer

web service needs to be deployed for it. The web service should be deployed

somewhere on the cloud and communicate to the smart condo web service with

the API described in this section. The way the new localizer communicates

with its sensors is completely up to the person implementing it. It can have

the same API as the current Estimote and Motion localizers but also can

have a completely different format to best suit the new sensors and their

characteristics. The only important rule that has to be followed is the way it

communicates to the smart condo web service and the format of the data that

is being sent to it.
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4.3 Deployment Process

As mentioned before in this chapter, the smart condo software is easy to deploy

in new environments with new sensors. The deployment process is done in 5

steps:

1. Install sensors: At first, the sensors need to be purchased and installed

preferably in a way that they cover all the space. Estimote sensors can

be purchased from their website [19]. The PIR motion sensors were built

from scratch in the network lab at the University of Alberta.

2. Prepare the configuration files: Configuration files are in text format

and reside on the same servers as the smart condo and localizers web

services are deployed. We call them smart condo server and localizer

servers. At the smart condo server, there are 3 configuration files that

need to be changed properly:

• network configuration.txt: This file contains the information

about smart condo API URLs, the size of the grid that should be

used for localization, the interval that the Raspberry Pi should send

its statistics, and a list of localizers communicating to the smart

condo web service (e.g., [’ESTIMOTE’,’MOTION’]). The name of

the localizers in the later field should match the ’source’ field that

the localizer is using when making a confidence map (refer to con-

fidence map in section 4.1).

• map.txt: This file has the coordinates of the map of the space and

the obstacles. The obstacles can be defined as polygons with their

corners’ coordinates.

• estimote.txt: This file contains the information about all Estimote

sensors that are deployed in the space.

• motion.txt This file contains the information about all PIR motion

sensors that are deployed in the space.
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When a new type of sensor is added to the system, there should be a new

configuration file in the smart condo server containing the information

about all those sensors which are deployed in the area.

At each of the localizers, there is another set of configuration files:

• network configuration.txt: This file includes the information

about the specific localizer’s API URLs.

3. Set up the servers: One can deploy all the web services on the same

server listening on different ports, or on different machines. To deploy

them, an Ubuntu 14 or higher is needed. The setup is very straightfor-

ward and a setup guide is prepared in order to do that.

4. Set up the Raspberry Pi: A python program, developed in the net-

work lab, should be deployed on the Raspberry Pi and the IP address of

the server on which the motion localizer is deployed should be set in its

code.

5. Install the Android application: As mentioned before, the Estimote

sensors talk to an Android application. This application is developed

using the Estimote SDK provided by the company which uses the Blue-

tooth Low Energy technology to get the packets from Estimotes. Based

on some research on the Estimote online forum, we realized that some

of the older Android phones do not work properly with the Estimotes.

The phone needs to have Android version of 5 or higher and should not

be in the list of incompatible devices that we prepared based on trial

and error by ourselves or other users. After installing the application,

the user should turn on WiFi and Bluetooth. The user is then asked to

enter a username and the URL of the server that the Estimote localizer

is deployed on, in order to register the device. Then the application loads

the map of the space and while he/she is moving around in the sensing

area of an Estimote sensor, the new sensor is shown to the user as well.
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Chapter 5

Conclusion

5.1 Conclusion and Future Work

In this thesis, we have addressed the problem of estimating the location of

multiple individuals moving and interacting in an indoor space. Our work

makes three key contributions. First, it proposes a multi-sensor data-fusion

framework, relying on a unifying location-estimate representation as a confi-

dence map of the indoor space. In this framework, each distinct type of sensor

data is processed by a sensor-specific algorithm to generate a sensor-specific

confidence map; all sensor-specific confidence maps are subsequently fused

into a single set of confidence maps corresponding to location estimates for

each individual. Second, our framework distinguishes between anonymous and

eponymous sensors, such as motion sensors and Estimote stickers. This combi-

nation enables our Estimote+PIR method to accurately recognize individuals

when all, or in 2 participant session, only one, carry a smartphone running the

application that collects the Estimote sensor events. The later scenario is ex-

tremely important because it is motivated by the requirements of real settings

involving caregivers who are willing to adopt and carry technologies such as

smartphones, but the cared-for person is unable or unwilling to consistently

use such a device. Third, our framework is implemented in an extendible and

easy-to-deploy software system, enabling it to be forward compatible with new

sensors, as long as they can be categorized in the two categories above. We

believe that in the future more accurate sensors, especially for the purpose of

activity recognition, can be added to the framework, and by using the location
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estimates coming from other sources, it can detect the activity more precisely.

We conducted six experiments, involving data collection from a real envi-

ronment. We established that using our Estimote+PIR method, the location

of the individual that is not carrying/wearing a device on them can be deter-

mined just as accurately as it would have been if the individual was carrying a

device. We also identified several crucial parameters that influence the accu-

racy of the proposed scheme. One of them is the relative coverage of the space

by the sensing “footprint” of the eponymous data collected via the Estimotes:

the larger this space is, and the higher the number of Estimotes deployed,

the smaller is the impact of the coverage by the anonymous (motion) sen-

sors. Nevertheless, this has to be seen against the backdrop of deciding on

an RSSI threshold for the Estimote signals (-70 dBm in this study), which

effectively transforms the Estimotes into proximity sensors. We also noticed

that the lack of synchronization across the two (and potentially more) sources

of sensed data, if not addressed at a lower layer, has to be accommodated

when defining the accuracy metrics of a “fused” location-estimation scheme.

By affording a 60-second window delay, we could derive more accurate loca-

tion estimations than for shorter delays. The situation may be quite typical

in future systems that use completely heterogeneous sources of data, utilizing

different technologies and communication standards. In most such cases, no

single one-size-fits-all low-level synchronization solution can be used, and the

onus of synchronization shifts to the application layer.

We have conducted and reported on a number of experiments demonstrat-

ing the efficacy of our Estimote+PIR method, but we also note that a sig-

nificant cost of the overall endeavour was the ground-truth annotation of the

source data. To the extent that one high-priority item that impedes future

research can be described, it will have to be the ability to automatically (or

at least semi-automatically) annotate ground truth from captured traces. The

use of computer vision techniques may be indispensable for such a task.

Finally, by re-designing the software, we were able to do the localization

in real-time. Moreover, the software is now much easier to scale and add new

technologies.
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Tables A.1 and A.2 in appendix A compares our Estimote+PIR method

and recent related work in this area. The Tables demonstrates that our method

makes realistic knowledge assumptions, does not require onerous configuration-

deployment effort, and has been thoroughly evaluated in realistic scenarios.

Almost all the methods that have better accuracy than ours have not been

tested in real environment when the subject has natural movements of an ev-

eryday life. Our system, as we discussed in chapter 3.2.6, have been evaluated

in the SmartCondoTMwith single or double subjects doing everyday activities.

5.2 Future Work

An interesting subject for the future would be using the history of the location

and activities of the occupants into account when making an inference on the

current location (e.g., it is more likely to go to the dining room after making

tea than to the bathroom). Right now, we are using history in a very simple

way with only two purposes, first, comparing current location with the last

one, the person cannot move faster than 1.3 m/s. Second, when there is no

new event coming from one of the groups of sensors, the system fuses the last

data available with the new data coming from the rest of the sensors.

Another interesting area which needs more attention in the future is the

threshold that we have used for the Estimote sensors. Based on our experi-

ments in section 3.1, we decided to use -70 dBm threshold for when the subject

is in 1-meter distance from the sensor. We believe that this needs more re-

search and by doing a profiling strategy on every new space that the system is

being deployed, and also taking into account the fact that the RSSI distribu-

tion can change based on the power level of the transmitter [28], we can select

the optimum value for threshold and as a result of that, the accuracy of the

localization system can improve.

In this research, we didn’t put much effort on the activity recognition task.

We only used the Estimote sensors for that and only took the accelerometer

values to detect their movement. In the future, other than using other types

of sensors like switches and pressures sensors, and using other properties of
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the Estimote data, we can use more complex methods like machine learning

algorithms to do the activity recognition like the ones used in [10]. These

methods can use the location of the occupants as an input feature to better

guess the activity, e.g., it is not possible for a person in the bedroom to be

using the stove in the kitchen.

Finally, based on our observations during this study, we believe that the

battery lifetime can be improved further by sending a “stop” message from

the server to the phone, to stop scanning for and streaming Estimote data

when the caregiver’s phone is far away from the area where the cared-for

person may be located. This condition can be identified when the Google

geolocation API localizes the device away from the residence of the patient

and no relevant Estimote readings have been received for some time. Another

frequently employed technique is to identify from accelerometer data that the

phone or smartphone is stationary and to throttle or stop sending updates, but

such inactivity might mean that the individual has forgotten or not worn the

device, and the protocol to react to such exceptions is dependent on the exact

context. This feature—namely, controlling the phone application operation

for the sake of extending its battery life—can be the subject of the possible

future work.

62



References

[1] F. Adib, Z. Kabelac, and D. Katabi, “Multi-person localization via rf
body reflections.,” in NSDI, 2015, pp. 279–292. 8

[2] M.-H. Amri, Y. Becis, D. Aubry, N. Ramdani, and M. Fränzle, “Ro-
bust indoor location tracking of multiple inhabitants using only binary
sensors,” in Automation Science and Engineering (CASE), 2015 IEEE
International Conference on, IEEE, 2015, pp. 194–199. 10, 69

[3] D. Ayllón, H. A. Sánchez-Hevia, R. Gil-Pita, M. U. Manso, and M. R.
Zurera, “Indoor blind localization of smartphones by means of sensor
data fusion,” IEEE Transactions on Instrumentation and Measurement,
vol. 65, no. 4, pp. 783–794, 2016. 8, 69

[4] M. V. Azghandi, I. Nikolaidis, and E. Stroulia, “Sensor placement for
indoor multi-occupant tracking,” in Information, Intelligence, Systems
and Applications (IISA), 2015 6th International Conference on, IEEE,
2015, pp. 1–8. 2, 3, 12, 35, 68

[5] S. Beauregard and H. Haas, “Pedestrian dead reckoning: A basis for per-
sonal positioning,” in Proceedings of the 3rd Workshop on Positioning,
Navigation and Communication, 2006, pp. 27–35. 6

[6] Z. Chen, Q. Zhu, and Y. C. Soh, “Smartphone inertial sensor-based
indoor localization and tracking with ibeacon corrections,” IEEE Trans-
actions on Industrial Informatics, vol. 12, no. 4, pp. 1540–1549, 2016.

7, 68

[7] T. Chowdhury, M. Rahman, S.-A. Parvez, A. Alam, A. Basher, A. Alam,
and S. Rizwan, “A multi-step approach for rssi-based distance estimation
using smartphones,” in Networking Systems and Security (NSysS), 2015
International Conference on, IEEE, 2015, pp. 1–5. 5, 15

[8] P. N. Dawadi, D. J. Cook, and M. Schmitter-Edgecombe, “Automated
cognitive health assessment from smart home-based behavior data,” IEEE
journal of biomedical and health informatics, vol. 20, no. 4, pp. 1188–
1194, 2016. 38

[9] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation
using only wifi power measurements,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 7, pp. 1381–1393, 2015. 8

63



[10] D. Diaz, N. Yee, C. Daum, E. Stroulia, and L. Liu, “Activity classification
in independent living environment with jins meme eyewear,” in Percomm
2018, Not yet published. 62

[11] M. P. Fanti, G. Faraut, J.-J. Lesage, and M. Roccotelli, “An integrated
framework for binary sensor placement and inhabitants location track-
ing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2016. 10

[12] S. Ferdous, E. Becker, L. Fegaras, and F. Makedon, “Multi-person iden-
tification and localization using rfid and passive sensor technology,” in
Proceedings of the 4th International Conference on PErvasive Technolo-
gies Related to Assistive Environments, ACM, 2011, p. 66. 10, 69

[13] C. Fraley and A. E. Raftery, “How many clusters? which clustering
method? answers via model-based cluster analysis,” The computer jour-
nal, vol. 41, no. 8, pp. 578–588, 1998. 36

[14] G. Galatas, S. Ferdous, and F. Makedon, “Multi-person identification
and localization for ambient assistive living.,” LECTURE NOTES IN
COMPUTER SCIENCE, no. 8028, pp. 109–114, 2013, issn: 03029743. 10, 68

[15] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning sys-
tems for wireless personal networks,” IEEE Communications surveys &
tutorials, vol. 11, no. 1, pp. 13–32, 2009. 44

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuris-
tic determination of minimum cost paths,” IEEE transactions on Sys-
tems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. 34
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Appendix A

Method Comparison

Tables A.1 and A.2 are a summary of all the previous methods discussed in

chapter 2 and our Estimote+PIR method.
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