
436 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 3, MARCH 2015

The Smart-Condo: Optimizing Sensor
Placement for Indoor Localization

Iuliia Vlasenko, Ioanis Nikolaidis, Member, IEEE, and Eleni Stroulia

Abstract—The Smart-Condo is a hardware/software platform
that aims to support and assist an individual in performing
a variety of everyday tasks within his/her living space. The
key to achieving this goal is being able to recognize the indi-
vidual’s general activities in real-time, without impeding these
activities or compromising privacy. Since location and move-
ment constitute meaningful evidence for many everyday tasks
(e.g., presence in the bathroom correlates with personal hygiene
activities), we are motivated to develop an efficient, accurate,
and noninvasive occupant-localization method. To this end, we
propose a methodology for planning the deployment of an array
of privacy-respecting binary motion sensors. In particular, given
the geometric constraints of the deployment space, we generate a
model of indoor mobility patterns typical for a single occupant.
We then use this model as the basis for a specific optimization
problem: maximizing a measure of how well the frequently-
visited areas of the living space are covered by a number of
sensors, subject to a cardinality constraint on this number. We
argue this optimization objective is a good surrogate for maxi-
mizing localization accuracy, and prove that it bears exploitable
properties that make it receptive to a simple optimization rou-
tine. As a result, we obtain sensor configurations with localization
accuracy superior to that achievable with the same number of
sensors placed manually or randomly in the same environment.

Index Terms—Indoor localization, optimization, sensor
placement, smart homes, wireless sensor networks (WSNs).

I. INTRODUCTION

THE term “smart home” refers to a home embedded with
sensors, with which to observe the environment and its

occupants’ activities, and actuators, with which to automati-
cally control the home ambience and devices to improve the
occupants’ experience [1]. Sensor-based systems are a com-
mon means of nonintrusively monitoring a person’s activity
and providing this person, and his/her formal and infor-
mal caregivers, with useful information for making decisions
regarding his/her care [2]. In this paper on the Smart-Condo
project [3], we have been developing an integrated hardware-
software platform for addressing this broad research problem.

The Smart-Condo was conceived as a multipurpose
platform for a variety of services such as location- and
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activity-recognition, alert generation, home automation, etc.
Many of these services rely on accurate occupant localiza-
tion and movement analysis. The importance of understanding
the occupant’s mobility cannot be underestimated as, on a
long-term basis, mobility data can be mined for patterns use-
ful for the diagnosis and assessment of progressive chronic
conditions [4]. As a short-term benefit, a system with an accu-
rate location-recognition method can substantially improve the
occupant’s living experience as it can anticipate and provide
various intelligent services (by controlling home actuators)
based on the occupant’s location and movement trajectory.

The effectiveness of a localization method depends on mul-
tiple factors, including the underlying tracking technology, the
localization algorithm, and the geometric and structural prop-
erties of the deployment space. Our platform employs passive
infrared (PIR) motion sensors due to the privacy-respecting
nature of their operation, i.e., the only information captured
is whether motion occurred within a sensor footprint. Such a
technology is more likely to be accepted by users sensitive
to video-surveillance techniques, but this benefit comes at the
cost of lower localization accuracy.

One way to improve accuracy is to use a larger number
of sensors along with a data fusion mechanism. Recognizing
that a major factor hindering the adoption of smart-home
technologies is cost, we have focused on investigating the
tradeoff between the number of sensors (and the consequent
cost of the system) and the localization accuracy achiev-
able with a particular sensor placement. In addition to costs
associated with equipment and manual labor required for
installation and maintenance, each new deployment implies
a rather time- and resource-consuming, and thus costly,
deployment-planning phase. That is, an expert has to analyze
the requirements and design a sensor placement that satisfies
the geometric specifications of the new space and guaran-
tees a desirable performance level. Our past experience proves
this task challenging since it may require trial runs on the
fully deployed system until an acceptable sensor configuration
is found.

To enable informed decision making on the part of potential
adopters, we have developed a systematic process for simu-
lating and evaluating the performance of the system under
particular deployment conditions [5]. Through this process,
we can estimate the localization accuracy of candidate sen-
sor placements in the predeployment phase thus virtually
eliminating costly trial runs with human participants.

To date, the Smart-Condo platform has been deployed
in three different spaces [6]–[8]. The first two deployments
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served more as validations of the robustness of the plat-
form and its potential usefulness for care providers. Our most
recent deployment at the indoor-localization competition [8]
was the first time we were able to showcase our platform’s
more mature occupant-localization feature. While preparing
for the competition, we ran extensive simulations to help us
decide on a deployment for the competition. Despite its useful-
ness, this simulation process was not systematic in designing
candidate placements; rather it relied on experts, i.e., our
team, to suggest intuitively good placements. In this paper, we
advance our methodology by introducing a semi-automated
approach for generating sensor placements optimized for
localization.

Our approach relies on the basic observation that “the rela-
tive sensor-target geometry can significantly affect the poten-
tial performance of any particular localization algorithm” [9].
We hypothesize that the geometry of sensor placement can be
optimized with respect to the measurements being taken, i.e.,
localization of a single occupant of the indoor environment,
thereby improving the localization accuracy of our system
without modifying the existing localization algorithm.

To achieve this goal we propose the following methodol-
ogy. Given an architectural drawing of the deployment space,
we extract its geometric properties and the locations of var-
ious objects of interest. Using this information, we generate
a model of anticipated mobility patterns. Next, we provide
specifications of motion sensors that are in turn translated into
deployment-specific sensor models. Finally, we obtain a sensor
placement as a solution to an optimization problem formulated
using the generated mobility and sensor models.

Such an enhanced methodology may become the first step
toward self-configuration of our system for deployments in
new spaces. The crucial implications of this paper are the
following.

1) Our method eliminates the need for either expert knowl-
edge or intuitive guesses which are typically required for
manual sensor placement.

2) Our method is able to identify how a reduced num-
ber of sensors may be best placed to achieve a desired
performance level.

Therefore, this paper makes a promising case for the reduc-
tion of the overall cost of a new deployment and, consequently,
toward greater proliferation of smart-home technology in
general.

In the rest of this paper, we review recent research in the
broad field of optimal sensor placement for wireless sensor
networks (WSNs) and relate various optimization problem
formulations to our objectives in Section II. We propose a
mobility-modeling methodology in Section III and describe
application-specific sensor models in Section IV. We formu-
late a sensor placement optimization problem, comment on
its complexity, and justify our selection of an approximation
routine in Section V. We then discuss the effects of parameter
selection in Section VI. Finally, we present our simulation
platform (Section VII), report on our experimental evalua-
tion (Section VIII), and conclude with a summary of results
achieved in this paper and plans for future work (Section IX).

II. RELATED WORK

An extensive review of various strategies for sensor
placement in WSNs with respect to their application
domains and problem formulations has been conducted by
Younis and Akkaya [10]. The authors claim that optimal node
placement is proved NP-hard for most proposed formulations
of the sensor-deployment problem. Most studies, therefore,
suggest heuristics for finding sub-optimal solutions. Another
survey [11] is more narrowly focused on indoor monitoring,
thus, the authors select a single problem formulation, list a
number of applicable optimization criteria, and then review
all relevant approaches. Most approaches are iterative: sequen-
tial approaches greedily place one node at a time; simulated
annealing probabilistically selects a variable for permutation in
each iteration; genetic algorithms generate better fitting pop-
ulations of candidate solutions. We review the first survey in
the next paragraphs.

Younis and Akkaya [10] identify three criteria by which
to categorize sensor deployment strategies: 1) the methodol-
ogy for initial deployment; 2) the optimization objective; and
3) the roles of nodes in the network. The initial deployment
strategy can be randomized or controlled and depends heavily
on the scale of the network and properties of the observed
environment. A random distribution of nodes is applicable to
large-scale networks where careful placement of nodes appears
infeasible, e.g., inaccessible natural habitats. In this case, the
objective becomes to optimize node density or redundancy
for fault-tolerance. Toumpis and Gupta [12] present a density-
oriented study. The authors assume massively dense networks
and suggest optimizing node density with respect to macro-
scopic parameters such as information density and traffic flow.
In a smart-home type of deployment, we can only afford a
reasonably small number of sensors, and hence opt for the con-
trolled deployment option. We do not address fault-tolerance
achievable by means of node redundancy as we impose a
strong constraint on the number of nodes for cost and aesthet-
ics purposes. However, we will investigate this direction in the
future.

The most commonly considered optimization objectives are
area coverage, network connectivity and/or longevity, and data
fidelity [10]. A typical coverage problem is cost minimization
under coverage constraints, where the surveillance region is
approximated by a finite set of grid points; this problem can
be solved using integer linear programming [13].

Techniques dedicated to network operation requirements
(i.e., connectivity and longevity) are relevant primarily to mul-
tihop networks, and therefore on the periphery of our study
since the Smart-Condo project follows a single-hop model,
i.e., every node deployed in the condo communicates directly
with the sink node (base-station). This is because: 1) the total
area of the potential surveillance region is fairly small (in the
current setup, a one bedroom apartment of 10.6 × 6.3 m) so
that all the nodes lie within the communication range of each
other and 2) we are interested in real-time updates, whereas
a multihop communication model may introduce additional
delays due to processing and retransmissions at the relay-
nodes. For these reasons, we confine our optimization attempts
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to maximizing data fidelity, i.e., localization accuracy under a
number of nodes constraint, deliberately disregarding commu-
nication costs, and other network-operation-related concerns
due to the simplistic communication model used.

The data fidelity objective can be approached as a data
fusion problem. Multiple sensors are placed in the vicinity of
the monitored phenomenon in such a way that guarantees that
the data obtained from the combined sensor readings are of
some desired quality. Such problems often involve probabilis-
tic models of sensing. For example, for target-detection prob-
lems, each sensor may be assigned a detection probability,
often a function of distance between the sensor and the target.
Under these conditions, Wu et al. [14] formulate a combina-
torial optimization problem with the objective of maximizing
the overall detection probability under a deployment cost con-
straint. They showed the decision version of the problem to
be NP-complete and used a 2-D genetic algorithm to gener-
ate an approximate solution. Krause et al. [15] capture several
optimization objectives; they aim to maximize “informative-
ness” of a sensor placement while minimizing communication
costs. They use the data collected during a pilot (nonopti-
mized) deployment to define probabilistic models for both
predictive quality of the placement, i.e., the ability to predict
values at locations where no sensors are placed, and the qual-
ity of communication links between sensors. The proposed
iterative algorithm first identifies clusters of nodes and then
greedily finds a sub-optimal (but with proven approximation
guarantees) placement within each cluster.

In the narrower research area of indoor sensor place-
ment, we focus on placement problems that consider
obstacles affecting the sensing range of assumed nodes.
Dhillon and Chakrabarty [16] incorporate information about
obstacles into probabilistic detection models. They also inte-
grate a model of preferential coverage for areas of high impor-
tance. Eventually, they apply an iterative greedy algorithm that
places one sensor at a time to the grid point with the lowest
confidence level of detection. David et al. [17] consider sen-
sors whose sensing range is defined by line of sight (e.g., video
cameras, pyroelectric infrared sensors) and, therefore, the
actual range is derived from application of the ray-tracing algo-
rithm to the sensor-obstacle geometry. A number of sensor-
placement candidates is used to train a genetic algorithm,
which finds a (sub)optimal candidate satisfying the coverage
constraint.

Perhaps most closely related to our optimization formulation
is the work of Wang et al. [18]. They exploit the fact that in
many applications the importance of sensed information varies
across the sensing field. Thus, they define points of interest
which should be optimally covered. Such a strategy may not
yield full coverage but it does maximize the sensed informa-
tion utility. We too would like to sparsely distribute sensors in
the indoor environment and yet be able to sense the most valu-
able data. We propose a methodology that identifies areas of
high interest (mobility) and inherently incorporates geomet-
ric properties of the space and information about obstacles.
We take into consideration the space floorplan and furniture
placement and make realistic assumptions about most common
paths in the occupant’s daily routine.

Some similarities to our approach can also be seen in the
MavHome location-aware predictive framework [19], which
is another example of a smart-home technology that aims
to anticipate the occupant’s desires and provide proactive
resource management and on-demand operation of actuators.
A critical assumption is that the occupant travels along most
typical path segments between rooms, thus, mobility data can
be learned over time and used to predict the occupant’s loca-
tion. In this framework, the sensor placement is assumed from
the existing infrastructure; the authors are not concerned with
the cost of deployment. Our own speculation based on anal-
ysis of this framework is that after sufficiently long learning
it might not need immediate updates from the whole array of
sensors; a small subset of sensors in most critical zones may
be sufficient for a successful prediction. We, however, do not
want to rely on a learning phase of system operation, given
our experience with short-term deployments (e.g., some past
trials lasted only two days). That is, we are strongly moti-
vated to generate high-quality location estimates at any point
in time. To achieve this goal we attempt to model mobility pat-
terns anticipated in the indoor environment prior to the actual
data collection, and propose an algorithm that optimizes sensor
placement with respect to the resulting mobility model.

III. MOBILITY MODELING

Mobility patterns in an indoor environment resemble typical
road traffic with its bottlenecks, conjunctions, and more and
less traveled segments. If we have a limited budget of sensing
devices and cannot achieve full coverage of the space, a natural
solution is to place sensors in the most traveled locations. Even
if the budget of devices suffices for full coverage, but the space
is not uniformly utilized, localization errors occurring in more
traveled areas will have greater impact on the overall accuracy
than localization errors in the rest of the space. Following this
reasoning, we aim at optimizing sensor placement with respect
to how frequently the occupant visits various regions.

Typically, information about the occupant mobility patterns
is not available in the predeployment phase, and to have a
pilot deployment to collect such data is costly and impracti-
cal. Therefore, we propose a framework for mobility modeling
that relies on mere knowledge of the architectural drawing of
the deployment space, i.e., a floorplan. We also want to take
advantage of contextual information that can be inferred from
positions of furniture and amenities depicted on the floorplan.
Next we apply a number of transformations to the floorplan
that let us extract this information.

A. Floorplan Color Coding

Consider the floorplan of the Smart-Condo (Fig. 1). We
assume that the occupant’s daily routine consists of a num-
ber of short path segments between arbitrary pairs of objects
depicted in the floorplan (e.g., bed → toilet, stove → din-
ing table, entrance door → recliner). We first identify all
objects of interest (e.g., bed, fridge, stove, sink, toilet) and
augment the floorplan using a custom color coding scheme.
This color coding procedure is the only manual step of
our methodology (easily performed using graphics software).
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Fig. 1. Smart-Condo floorplan (gray walls, black doors).

Fig. 2. Augmented floorplan.

Fig. 2 shows the result of the procedure and contains five types
of objects: 1) walls; 2) doorways/sliding doors; 3) impass-
able fixed-position obstacles, i.e., all large pieces of furniture;
4) obstacles that may frequently change positions, e.g., chairs;
and 5) areas of interest associated with every object of interest
(narrow strips next to the articles of furniture).

The fourth type of object (henceforth referred to as the mov-
ables) is of particular interest. We assume that these objects
remain within a certain area of the space but may occasionally
be moved to random locations. To model this behavior of the
movables, we define the borders of the area that confines their
displacement, and then determine all possible locations within
that area that satisfy the dimensions of the movables. Fig. 3
depicts the grid of such positions.

The last type of object represents areas where the occu-
pant is likely to end up while trying to approach a piece of
furniture. Note, for instance, the recliners in the living room:
they have only one side that can be sat on, therefore we place
the corresponding area of interest next to that side only. It
is harder to predict which side of the bed will be preferred
by the occupant; therefore we define the respective area of
interest around the rim of the bed. Other areas of interest
(next to the fridge, stove, etc.) are intentionally not adjacent
to the respective objects since the person typically reaches
those at arm’s length. A crucial distinction between the areas
of interest and their corresponding objects is that the former

Fig. 3. Grid of all positions that can be potentially occupied by the movable
obstacles.

are considered walkable and are used for constructing paths
between otherwise impassable objects.

Having defined all the necessary objects, the augmented
floorplan serves as input to our custom floorplan parser. The
parser renders the matrix of image pixels into a uniform grid
(with configurable grid step size) and outputs various data
structures corresponding to the groups of objects.

B. Calculating Visitation Frequencies

We want to model a variety of realistic paths between all
pairs of objects of interest. Once the augmented floorplan is
approximated to a square grid, each area of interest turns into
a set of grid points. The procedure of constructing a path
between a pair of objects entails choosing a point from each
set of points corresponding to the objects and inputting two
such points as a start and a goal into a path finding algo-
rithm (PFA), i.e., a generic implementation of A* [20]. All
the grid points except walls and impassable obstacles are con-
sidered walkable (assuming the doors can always be opened
if needed).

Given that the PFA always produces the shortest path, we
may end up with recurring straight-line paths that do not accu-
rately represent the actual paths a human would choose. To
mitigate this effect, we blockade a number of walkable points
at random for each execution of the PFA. The number of
blocked points is configurable; more blockage generally leads
to greater variance in the resulting paths but also increases
the PFA running time. We tested a range of values and found
blocking 30% of the walkable points gave a good tradeoff.

Fig. 4 illustrates how different the paths generated for the
same pair of objects can be due to three types of randomized
input: 1) start and goal points representing objects of interest;
2) positions of the movables; and 3) blockage of a number of
walkable points. This model also takes into account a body
diameter of the assumed occupant, which helps to smooth
out the otherwise sharp turns the PFA tends to make around
obstacles.

To obtain a general picture of mobility patterns, we run the
PFA over all pairwise combinations of objects multiple times.
The result of this procedure depends on the number of times
a particular object participates in path construction. This num-
ber has to represent the object’s importance in a typical daily



440 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 3, MARCH 2015

Fig. 4. Effects of randomization on the results of path-finding (black dots are
blocked grid points). (a) Path 1.1: bed—recliner. (b) Path 1.2: bed—recliner.
(c) Path 2.1: bed—stove. (d) Path 2.2: bed—stove.

Fig. 5. Heatmaps of anticipated mobility patterns before/after “smoothing.”
(a) Raw heatmap. (b) Smoothed heatmap.

routine of the occupant. For example, if the occupant uses
the bed twice a day, visits the kitchen three times a day, and
uses the washing machine once a week, then those objects can
be assigned weights at a ratio 14:21:1, respectively, and their
occurrences during multiple runs of the PFA will conform to
this ratio. To assign weights we have to make certain assump-
tions about the daily routine of the occupant. Perhaps, one
way to obtain this information is from a survey about typical
usage of appliances, filled out by the person to be tracked.
Our mobility modeling module is designed to properly handle

weight assignment, although in this paper we keep the weights
equal for simplicity. We intend to investigate the impact of
different weights (tailored to real patients) on the placement
optimization in future real-world trials.

The resulting mobility model can be represented as a
heatmap of the counts of the times that the assumed occu-
pant visits respective grid points [Fig. 5(a)]. The number of
paths generated for this image is the minimal number that
guarantees that every point from a set representing an object
has at least one path to every other object (a total of 18 060
paths in the examples presented here). This heatmap, how-
ever, suffers from a visible defect: some grid points become
bottlenecks while others never get visited, although located
in “hot” areas, due to imperfections in grid approximation.
This phenomenon may have a negative impact on the gener-
ation of sensor placements, and we therefore eliminate it by
“smoothing” the heatmap. Fig. 5(b) depicts the final heatmap
further used for finding placements optimized for coverage of
the “hottest” points.

To formalize a definition of the mobility model, let N denote
the number of walkable grid points, and hi denote the “heat”
score of the ith grid point, i.e., equal to the visitation frequency
from the smoothed heatmap. The mobility model is therefore
defined as a set of values {h1, . . . , hN}.

In the following section, we define the sensor-coverage
model, which together with the mobility model will be used
in the formulation of the optimization problem.

IV. SENSOR-COVERAGE MODEL

To define the sensor-coverage model, we first review the
PIR sensor operating principles. Next, we touch upon indoor
localization strategies and propose such a coverage model that
works toward achieving higher localization accuracy.

A. PIR Sensor Operating Principles

The motion sensors used in our platform are commercially
available PIR (pyroelectric) sensors chosen for their miniature
size, reliable human presence detection and low energy con-
sumption [21]. The sensor collects incident infrared radiation
from within their coverage area. Its output is binary: 0 for
no motion, and 1 when the sensor detects an increase in the
amount of radiation due to a moving object entering the cov-
erage area. Given a single sensor, the position of the moving
object cannot be discerned with any higher precision than the
“radius” of the sensor footprint.

One great advantage of these sensors over the major-
ity of alternative localization technologies is that the person
being tracked does not need to carry additional devices and
may remain unaware of the surrounding sensor infrastructure.
Therefore, they have been widely used in a number of indoor
localization studies [22]–[24].

B. Sensor Footprint

The PIR sensors detect motion in line of sight, hence, the
shape of sensor footprint is defined by the mounting posi-
tion, orientation, and obstruction effects of the walls and
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furniture. To reduce the search space of candidate sensor posi-
tions/orientations, we assume that the sensors are mounted
on the ceiling and restrict the possible sensor orientations to
orthogonal with respect to the floor plane, e.g., a cone projects
into a circle. We are less interested in the circular projections
since, despite a great amount of previous research concerned
with this particular sensing model [14], [22], [23], exact cir-
cular coverage is a rarity. Instead, we choose to model sensors
whose volumetric coverage shape is a rectangular pyramid
with the base of 2 × 1.4 m in cross section at 2 m-height [21].
We consider two orientations of a ceiling-mounted sensor: the
longer side of the base of the pyramid is either parallel or
perpendicular to the longer side of the floorplan. Technically,
the PIR sensor specifications can be expressed in relative or
abstract units for the sake of easily generalizable results but
we prefer to keep the real-world reference in order to relate
our results in this paper to our previous practical experience.

Note that the obstruction effects of the walls and doors
greatly impact sensor projections to the extent that we have
to deal with polygons of arbitrary shapes and sizes. To avoid
complicated geometric calculations in continuous space we
discretize sensor projections using the grid points defined
during the mobility modeling phase. After this step we can
easily determine the approximate sensor footprint resulting
from obstruction by applying a ray tracing technique to every
grid point within the borders of the default sensor projec-
tion. Fig. 6(a) visualizes the ray tracing procedure; Fig. 6(b)
shows the grid approximation used in further calculations
instead of the actual polygons [Fig. 6(c)]. This implies that
our sensor-placement method can be applied to arbitrary
sensor projections, e.g., elliptic or, more generally, any con-
vex/concave shapes whose borders may be defined as a list of
connected line segments and arcs).

C. Modeling Sensor Coverage and Obstacles

Having determined the shape of the sensor projections,
we can proceed to define the sensor-coverage model through
which to capture the probability of a motion event being
detected by a particular sensor. Based on published sensor
operating principles [21] and a number of empirical studies
we have performed, the probability of detecting a true positive
motion event by a PIR sensor is uniform within its footprint
and approaches 1. Therefore, a naive model would represent
the coverage of a given sensor by assigning 1 s to the grid
points within the sensor footprint and 0 s outside.

We further extend the sensor-coverage model by incorpo-
rating information about obstacles, in a way similar to that
described by Dhillon and Chakrabarty [16]. To explain the
impact of obstacles on our sensor model we refer to Fig. 6(b):
the footprint of one of the sensors reaches beyond the bound-
aries of the room through the doorways. Such a footprint holds
true as long as the doors are open. Effectively, the probability
of doors being open over the time of system operation directly
translates into the probability of motion detection in those
“seen-through-doorway” points over the same period. This
directly impacts the quality of coverage in such areas, and is
reflected in our sensor-coverage model. More formally, let c

{sj}
i

Fig. 6. Various sensor-coverage representations. (a) Ray tracing applied to
grid points. (b) Grid approximation of sensor coverage (crosses indicate points
seen through a doorway). (c) Real shape of sensor-coverage projections.

denote the amount of coverage units, i.e., an abstract measure
of coverage quality, allocated to the arbitrary ith point by plac-
ing sensor sj on the grid. We ultimately define the coverage

model of sensor sj through a set of values {c{sj}
1 , . . . , c

{sj}
N } such

that

c
{sj}
i =

⎧
⎪⎨

⎪⎩

1 if i ∈ Csj \ Dsj

pod if i ∈ Dsj

0 else

(1)

where i = 1, . . . , N are indices of grid points, Csj is a set of
grid points covered by the sensor after ray tracing has been
applied [see Fig. 6(b)], Dsj � Csj is a set of points seen by
the sensor through a doorway [the crosses in Fig. 6(b)], and
pod is the probability that the doors are open. If no statistics
about doors usage are available, we will simply assume that
they are open 50% of the time, i.e., pod = 0.5.

D. Sensor Overlap and Localization Accuracy

Note that merely detecting motion with a single sensor
does not typically translate into high localization accuracy.
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Fig. 7. Allocation of coverage units.

For accurate indoor localization it is essential that the target is
sensed by multiple sensors simultaneously, especially if such
popular techniques as triangulation or trilateration are used.
As with these techniques, we may achieve better localization
accuracy with PIR sensors if several sensor footprints overlap
in high-interest areas. That is, upon fusing the readings from
the overlapping sensors, we will be able to infer that motion
occurred within the intersection region that is just a fraction
of a single sensor footprint, thus allowing us to predict the
location of the motion event more accurately.

We propose to express the increase of localization accuracy
due to overlapping sensors through accumulation of coverage
units in grid points covered by multiple sensors. That is, a
cumulative coverage score of the ith point, covered by a set
of sensors {s1, . . . , sk}, is defined as follows:

c{s1,...,sk}
i =

k∑

j=1

c
{sj}
i . (2)

In the most trivial case, when m sensors cover the ith point
with c

{sj}
i = 1, we obtain c{s1,...,sm}

i = m. In other words, the
coverage score is indicative of the number of sensors over-
lapping at a point. Fig. 7 illustrates how coverage units are
calculated for sensors s1 and s2 (assuming pod = 0.5)

c{s1}
i = 0.5, ∀i ∈ Ds1

c{s1}
i = 1.0, ∀i ∈ Cs1 \ Ds1

c{s1,s2}
i = 2.0, ∀i ∈ (Cs1 \ Ds1) ∩ Cs2 .

Since every sensor is associated with a set of values c
{sj}
i

defined for N grid points, we will further use N-dimensional
vectors sj = (c

{sj}
1 , . . . , c

{sj}
N ) to denote sensor-coverage mod-

els, and vectors c{s1,...,sk} = (c{s1,...,sk}
1 , . . . , c{s1,...,sk}

N ) to denote
a cumulative coverage model of the entire space after sensors
s1, . . . , sk have been placed.

Having defined both the mobility model and the sensor-
coverage model, we proceed with the formulation of an
optimization problem and a placement algorithm.

V. SENSOR PLACEMENT OPTIMIZATION

Let S be a set of potential sensor locations {s1, . . . , s|S|}
identified by tuples (xj, yj, zj, oj) for j = 1, . . . , |S|, where xj

and yj denote a pair of coordinates on the ceiling, zj denotes the
ceiling height, and oj denotes the sensor projection horizontal

orientation (0◦ or 90◦). We assume that no two sensors can
occupy the same grid cell. Note that, for the purpose of
simplicity, we also assume that the ceiling height is fixed
(at 2.5 m) and therefore omit the z-coordinate. Variable height
(e.g., sloped ceiling) can also be accommodated by making
the z-coordinate explicitly part of the calculations, under the
assumption that the sensor main optical axis is orthogonal to
the floor plane. To reduce the search space of (x, y) pairs, the
ceiling coordinate plane is discretized with the same grid step
as the floor plane.1 Therefore, sensor coordinates are aligned
with coordinates of the walkable grid points. In preparation
for the next steps of the algorithm we determine Csj and Dsj

for all sj ∈ S, thus generating the necessary sensor-coverage
models.

Given the mobility model as a set of heat-score values
{h1, . . . , hN}, and |S| sensor-coverage models, we are inter-
ested in identifying a subset of sensor locations P � S that
yields a set of coverage score values {cP

1 , . . . , cP
N} proportional

to the respective heat-score values. In other words, we would
like to allocate more coverage units to more frequently visited
areas, i.e., with higher heatmap values, thus ensuring overall
higher localization accuracy according to the line of reasoning
in Section IV-D. Unfortunately, if we simply follow this intu-
ition, and the range of the heatmap values is large (orders of
magnitude between the lower and upper values), too many sen-
sors may end up overlapping over the high-priority areas while
sacrificing coverage in the rest of the space. Such situations
are especially undesirable, and are likely to occur when the
device budget is limited. Therefore, we need to strike a trade-
off between redundant coverage of the most traveled areas and
sufficient coverage of the less traveled areas.

A. Coverage Utility

To address the issue of unbalanced coverage, we map the
whole range of heatmap values into a small range of coverage
utility values. Coverage utility is a measure of the importance
of a grid point and is indicative of a preferable coverage score,
i.e., such a cumulative coverage score per grid point that we
would like to achieve with sensor placement. That is, if c∗

i
denotes the coverage utility of the ith point, then by placing
k sensors we would like to achieve c{s1,...,sk}

i → c∗
i .

There are different ways to define a heatmap-to-coverage-
utility mapping. In our framework, we define a parameter
cmax as the maximum preferable coverage score per grid
point. We map all hi values into cmax + 1 buckets with labels
0, 1, . . . , cmax, thus translating highly varied hi values into
a limited range of c∗

i values. This way we balance the gap
between the lowest and highest values of the heatmap, while
retaining relative gradation. Essentially, the ratio of c∗

i scores
assigned to the hottest and least hot (but nonzero hi) points
is guaranteed to be cmax. This can be interpreted as if the
most frequently traveled points are restricted to be covered by
at most cmax sensors (under the simplifying assumption that
they are covered by sensors with c

sj
i = 1), whereas the least

1Practically, the grid of sensor positions is likely to have coarser granularity
than the mobility model grid, e.g., to align sensors with the tiles of a drop
ceiling, thus even further reducing the search space.
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Fig. 8. Coverage utility heatmap before and after having placed sensors.
(a) Heatmap of coverage utility values, cmax = 4. (b) Updated coverage
utility values with two sensors placed, crosshatched areas indicate negative
values.

frequently traveled points will still get a chance to be cov-
ered by at least one sensor (if they have been traversed by the
PFA at least once, meaning they are not in unreachable places,
e.g., an empty corner behind the fireplace).

The result of this mapping can be seen as a color quantiza-
tion of the original heatmap. Consider Fig. 8(a): the heatmap
of coverage utility values is colored in four different shades
of a base color (due to cmax = 4), to represent corresponding
values c∗

i > 0, and white for all grid cells with c∗
i = 0.

Another issue addressed by the choice of cmax is the size
of high-priority regions relative to the size of sensor foot-
prints; clearly, the higher the cmax, the smaller the eventual
top-priority regions. As mentioned in Section IV-D, higher
localization accuracy can be achieved by overlapping sensors
if the overlapping region is only a fraction of the size of any
of the contributing sensors’ footprints. This strategy fails if the
area of overlap approaches the area of a single sensor footprint,
i.e., sensors are clustered too closely together. Therefore, the
value of cmax is chosen so as to yield several small groups
of high-priority points corresponding to the most traveled
areas, and a large group of low-priority points, which sim-
ply outlines the overall walkable area. As long as clusters of
top-priority points are significantly smaller than a sensor foot-
print, our placement algorithm tends to avoid placing sensors,
overlapping over these clusters, too close to each other.

As with the vector c{s1,...,sk} representing a cumulative
coverage model defined in Section IV-D, we define an
N-dimensional vector c∗ = (c∗

1, . . . , c∗
N) to denote a coverage

utility model of the space.

B. Objective Function

Our goal is to define an objective function in terms of
coverage utility and sensor-coverage models. To that end, we
express the utility gained by adding an individual sensor, as a
function over the set of already placed sensors. Let us consider
the case when no sensors have been placed yet; the utility of
sensor s1 is defined as a function of s1 and the empty set

δ∅

s1
=

N∑

i=1

c{s1}
i c∗

i . (3)

That is, a sensor that most effectively covers (i.e., with
higher c

{sj}
i values) points with higher coverage utility is con-

sidered more useful than, for example, a sensor with the same
amount of coverage units but covering points with lower c∗

i
values. The expression (3) can also be rewritten in vector terms
defined in Sections IV-D and V-A as δ∅

s1
= s1 · c∗.

Note that once sensor s1 has been placed, another sensor
placed in a nearby location cannot be considered as useful as
the already placed one. In other words, if sensor s2 is placed
after sensor s1 and their footprints overlap, then the posterior
utility of sensor s2 is lower than its anterior equivalent, i.e.,
δ
{s1}
s2 < δ∅

s2
given C1 ∩ C2 	= ∅. Therefore, we express the

utility decrease of each newly added sensor in terms of the
mutual overlap with the already placed sensors. One way to
quantify the amount of overlap between sensors s1 and s2 is as
the dot product of the coverage models of two sensors s1 · s2.
The posterior utility score of sensor s2, given that sensor s1
has been placed on the grid, is defined as follows:

δ{s1}
s2

= δ∅

s2
− s2 · s1

= s2 · c∗ − s2 · s1

= s2 · (c∗ − s1). (4)

If we continue adding sensors, then the expression for the
posterior utility score of sensor s3 should account for overlap
with the two previously placed sensors

δ{s1,s2}
s3

= δ∅

s3
− s3 · s1 − s3 · s2

= s3 · c∗ − s3 · s1 − s3 · s2

= s3 · (c∗ − s1 − s2)

= 7s3 ·
⎛

⎝c∗ −
∑

1≤j<3

sj

⎞

⎠. (5)

We formalize this intuition into a closed-form expression
for the utility score of the mth sensor after m−1 sensors have
been placed

δ
{s1,...,sm−1}
sm = sm ·

(

c∗ −
∑

1≤j<m

sj

)

. (6)

Note that the sum of sensor vectors
∑

1≤j<m sj is another
vector whose ith component is a sum of coverage units allo-
cated to the ith grid point by placing sensors s1 through sm−1,

i.e.,
∑

1≤j<m c
{sj}
i . Using (2) and replacing the scalar values

with vector notation we rewrite expression (6) as follows:

δ
{s1,...,sm−1}
sm = sm ·

(
c∗ − c{s1,...,sm−1}

)
(7)

where a set of sensors {s1, . . . , sm−1} turns into ∅ if m = 1.
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We interpret (7) as a reduction in coverage utility values
for each sensor placed after s1. That is, placing a sensor over
a cluster of high-priority points can be seen as reducing the
“heat” in that area, which shifts priority to other areas for
the next iteration of the algorithm. This utility update mecha-
nism balances redundant coverage of high-priority points and
satisfactory coverage of the rest of the space. Fig. 8(b) illus-
trates how once a sensor is placed, the colors of the heatmap,
representing c∗

i values, change accordingly.
Note the cross-hatched areas: these are the points with zero

coverage utility, c∗
i = 0. Having placed a sensor over a set

of zero-utility points, their utility appears negative for all the
subsequent sensors according to (7). Zero-utility points are
typically points that have not been traversed by the PFA: 1) due
to a body-diameter constraint; 2) because they are unreachable;
or 3) they lie off the typical paths (e.g., room corners). Thus,
coverage units allocated to zero-utility points are, in effect,
wasted. Negative utility in this case can be seen as a penalty
that guides the algorithm to avoid further waste of coverage
units.

According to (7) it is generally possible to obtain a negative
utility score for sensor sm. However, the notion of negative
utility is inapplicable in a domain where additional sensors
simply provide extra information. Therefore, we apply positive
thresholding to the expression (7) so that the utility score of
a sensor can never be negative, and redefine the utility score
function as follows:

δ
{s1,...,sm−1}
sm = max

{
0; sm ·

(
c∗ − c{s1,...,sm−1}

)}
. (8)

Note that the algorithm may reach a state where many
sensors have been placed and the total number of allocated
coverage units

∑N
i=1

∑
1≤j<m c

{sj}
i exceeds the total amount of

coverage utility
∑N

i=1 c∗
i but the budget of sensors has not been

exhausted yet; this is an indication that the range of c∗
i values

is inadequate for the given number of sensors. Although we
resort to positive thresholding in (8), it is preferable to avoid
this situation by adjusting the range of c∗

i , i.e., by increasing
the cmax parameter (Section V-A).

Finally, the optimal solution to the sensor-placement prob-
lem is the one that maximizes the total coverage utility
obtained by placing k sensors, i.e., a function of a set
{s1, . . . , sk} expressed as a sum of utility scores of each
individual sensor using (6)

�({s1, . . . , sk}) =
k∑

i=1

si ·
(

c∗ −
∑

1≤j<i

sj

)

(9)

=
k∑

i=1

(

si · c∗ − si ·
∑

1≤j<i

sj

)

(10)

=
k∑

i=1

si · c∗ −
∑

1≤j<i≤k

si · sj. (11)

The second term on (11) is a summation of all possi-
ble distinct pairwise dot-products of sensor vectors, which
can be interpreted as a total penalty for overlapping sensors.
Eventually, we arrive at a closed-form expression for the objec-
tive function that we want to maximize. This is a discrete

combinatorial optimization problem with k N-dimensional
variables and a number of possible solutions equal to the
number of k-combinations of S, a set of sensor candi-
dates. Having established our objective, we comment on
the computational difficulty of optimizing it in the next
section.

C. NP-Hardness and Approximation Algorithm

The objective (11) is NP-hard to optimize for a fixed number
of sensors k. The proof is too long for inclusion in the main
text, and so we refer the reader to Theorem 1 in the Appendix.
As a summary overview, we outline a polynomial time reduc-
tion of the exact cover problem, known to be NP-complete,
to an instance of our optimization problem. Given a set of
elements U and a collection A of subsets of U, an exact
cover is a subcollection A

′
of A comprised of mutually dis-

joint subsets that cover every element in U. Our reduction
works by mapping the semantics of “element coverage” by
a particular set Aj from a collection A to “walkable point”
coverage by an associated sensor sj. Using a particular assign-
ment of coverage utility values and sensor-coverage models,
we obtain such an instance of our optimization problem for
which exact coverings are strictly preferred due to a penalty
associated with redundant coverage by any two overlapping
sensors.

The immediate result is that finding a globally optimal solu-
tion is computationally prohibitive for nontrivial instances. We
will therefore resort to an approximation algorithm. We pro-
pose a greedy algorithm that adds one sensor at a time to
maximize utility gain at each iteration. The algorithm takes k
iterations. At the mth iteration (m = 1, . . . , k) we recalculate
the utility scores of all sensor candidates from S using (8) and
add a sensor with the maximum utility score. If multiple sensor
candidates evaluate to the maximum score value, we choose
the one with the largest footprint, measured as the number of
covered grid points. A different tie-breaking mechanism can
be employed depending on the purpose of the deployment,
and as such, it allows for additional expert knowledge to be
encoded into the algorithm. The algorithm terminates after the
kth sensor has been placed.

D. Near-Optimality Guarantee

Nemhauser et al. [25] showed that, if the objective function
of an optimization problem exhibits the properties of sub-
modularity and monotonicity, a greedy algorithm produces a
near-optimal solution. In this context, a near-optimal solution
is defined as one that lies within a factor of two of the optimal
solution for minimization problems, or such that is ≥ 50% of
optimal for maximization problems.

The concept of submodularity has been exploited in a
number of sensor placement studies [15], [26]. Intuitively,
submodularity can be described as a property of diminish-
ing returns: adding a sensor to a small set of already placed
sensors is more beneficial (i.e., generates larger utility gain)
than adding a sensor to a large set of sensors. We prove that
indeed our objective function (11) is both submodular and
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Fig. 9. Specifics of sensor footprints reaching through doorways. (a) Sensor
2’s coverage is less reliable than sensor 1’s coverage due to the possibil-
ity of the door being closed. (b) Two sensors’ footprints overlap in regions
corresponding to two different rooms.

monotonic. Detailed proofs are given as Theorems 2 and 3 in
the Appendix.

Having proved that our objective function is submodular
and monotonic, we claim that the proposed greedy algorithm
is guaranteed to find a near-optimal solution. In particular, if
Sopt is a set of k sensors that yield maximum total utility,
and Sg is a set of k sensors found by greedy selection, as
outlined in Section V-C, then �(Sg) ≥ (1 − 1/e) · �(Sopt) ≈
0.63 ·�(Sopt). For more details on the proof of this bound for
greedy selection applied to submodular monotonic functions
please refer to the fundamental work by Nemhauser et al. [25].

VI. PARAMETER SELECTION

In this section, we discuss how the sensor placements pro-
duced by our algorithm are affected by the selection of the
parameters cmax (maximum preferable coverage utility) and
pod (probability of doors being open).

A. Doors and Context Ambiguity

Let us consider two sensors s1 and s2 such that the foot-
print of s1 fully belongs to a single room and s2 penetrates
into adjacent rooms through doors [Fig. 9(a)]. Let us also
assume that

∑
i∈Cs1

c∗
i = ∑

j∈Cs2
c∗

j , i.e., the total coverage

utility within each sensor footprint is equal. Using (3), we can
calculate the utility gain for each sensor placed independently

as
∑N

i=1 c
{sj}
i c∗

i , assuming no other sensors have been placed

on the grid yet. Plugging sensor-coverage model values c
{sj}
i

from (1) for each sensor, respectively, sensor s2 will receive
a remarkably lower score than s1 due to a significant number
of c

{sj}
i values equal to pod < 1. In other words, by assign-

ing lower coverage units to seen-through-doorway areas, the
sensor-coverage model effectively penalizes potential place-
ments that yield unreliable doorway coverage.

This penalizing side-effect can be exploited to avoid unde-
sirable artifacts of the type shown in Fig. 9(b). Sensors 3 and 4
belong to the same room and overlap in two disjoint regions
(the darkest shade in the image): 1) one lies within the same
room and 2) the other is seen through the doorways by both
sensors. If all the doors are open, the sensors will produce

Fig. 10. Examples of placements with different values of cmax and pod.
(a) cmax = 3, pod = 1. (b) cmax = 3, pod = 0.1. (c) cmax = 4, pod = 0.1.

identical signals for motion detected in either of the regions.
That is, if the moving target crosses the second region (black
dot in the image), both sensors get triggered, and those sig-
nals may be mistakenly interpreted as if the target is in the
first region. This type of error might not be as detrimental for
localization accuracy but greatly impacts the quality of con-
textual information. That is, we cannot distinguish between
target presence in the bathroom or bedroom if no other sen-
sory input is available. However, such information is crucial
for caregivers observing a patient. To avoid placements with
regions of ambiguous room designation, pod = 0.1 is used
in our experiments as a means of penalizing sensors covering
areas beyond the respective room boundaries.

B. Illustrative Results

Fig. 10 illustrates three placements generated for a bud-
get of five sensors and different cmax and pod values. The
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background of each image is colored according to the corre-
sponding cmax value: Fig. 10(a) and (b) have three shades of
color, and Fig. 10(c) has four.

We tested the effect of the value of pod on the resulting
placement by generating two placements with pod = 1 and
pod = 0.1. The difference between the two placements is
apparent: without a strict penalty for crossing the boundaries
of the rooms, about half of the footprint area of the sensor
placed in the bathroom in Fig. 10(a) reaches into the adjacent
rooms. Once the penalty is enabled [Fig. 10(b)], the same
sensor is “pushed” out of the bathroom into the bedroom. The
placement in Fig. 10(c) has been generated with the same pod
as in Fig. 10(b) but with cmax = 4. The difference is also
remarkable: the sensors are more tightly placed in the areas
of intensive color shades. Distinctive in this placement is that
two sensors were overlapped very precisely over the area of
the highest color intensity, which is one of the algorithm’s
main objectives.

Overall, these examples suggest that the algorithm may
work as expected, i.e., improve localization accuracy when
compared to unoptimized placements with the same number
of sensors, if used with well-chosen parameters. One diffi-
culty we encountered is that the selection of cmax proved
nontrivial. Intuitively, there should be a correlation between
this parameter and the number of sensors given for placement.
However, practically we did not observe a reliable pattern
and therefore resorted to choosing this parameter based on
the simulation results. In the next two sections, we describe
our simulation methodology and proceed with an experimental
evaluation.

VII. SIMULATION-BASED EVALUATION

Given a particular sensor-placement configuration, we eval-
uate the accuracy of the Smart-Condo localization component
through simulation. Experiments that involve trial runs with
participation of human subjects are cumbersome to organize
and difficult to assess. The simulation-based alternative allows
for arbitrary experiments prior to deployment (to reach a
desired level of precision) and allows insights into alternative
deployment strategies.

Our simulation methodology involves the following steps.
1) We build a 2-D model of the space from a floorplan.
2) Given a sensor placement, we integrate the 2-D sensor-

coverage map into the model of the space.
3) An avatar–simulacrum of the occupant–is scripted

(or manually controlled) to walk through the space. The
avatar trace is recorded by the simulator as a sequence
of <timestamp, location> tuples.

4) The trace is considered in the context of the sensor-
coverage map, which results into a stream of artificial
sensor events supplied to the localization component.

5) The original avatar trace is compared against the
sequence of locations inferred by the localization com-
ponent, to assess the accuracy of the sensor confi-
guration.

The simulator allows us to generate traces that realistically
represent the occupant’s daily routine. Fig. 11(a) shows such
a trace; each black dot is a <timestamp, location> tuple.

Fig. 11. Simulation sequence. (a) A fragment of an artificial “daily-routine”
trace. (b) Comparison of the ground truth and estimated locations.

Fig. 11(b) depicts how the active sensor is determined by
superimposing the trace tuples on the 2-D sensor-coverage
map. It also illustrates how the localization algorithm used
in our software generates its predictions. The algorithm’s ini-
tial coarse estimate is the center of mass of the polygon
corresponding to the overlap of the most recently triggered
sensors. The mechanism of coarse estimates is activated every
time when the short history of previous moves is unknown or
considered unreliable. Once a limited-size history of previous
locations has been collected, the algorithm starts generating
refined estimates along a physically plausible trajectory until
reaching the center of mass of the next adjacent “triggered”
area. At the moment, the algorithm does not exclude the area
occupied by obstacles from possible locations of the mov-
ing target. We, however, are not interested in changing this
behavior as we want to show that the localization accuracy
can be increased by merely optimizing the placement in con-
trast with attempts to improve the localization algorithm. For
more details, the interested reader should refer to [8].

VIII. EXPERIMENTS

We systematically evaluate the localization accuracy of
alternative sensor placements through simulation. Sensor
placements are compared by two factors: 1) placement strat-
egy and 2) cardinality. Based on the dimensions of the
assumed deployment space and sensor footprints, we focus
on cardinality in a range from 5 to 20 sensors.

We generated ten artificial traces of various length repre-
senting typical daily routines, as described in Section VII and
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Fig. 12. Localization error with respect to objective values of randomized
placements.

illustrated in Fig. 11(a). For each <timestamp, location> tuple
from a trace, the error is defined as the Euclidean distance, in
meters, between the avatar’s position and the position estimate
inferred by the localization component for the given times-
tamp. To summarize performance, we report the mean of the
localization error, standard deviation, and standard error as
well as three quartiles of error values.

A. Objective Value and Localization Accuracy

To demonstrate that higher objective values as computed
using (11) translate into lower localization errors, we perform
the following test. We generate five randomized placements
for k = 5, . . . , 20 sensors in the following fashion: we split
the spatially ordered set S of sensor candidates into k equally-
sized subsets and randomly select one candidate from each
subset. In this manner, we avoid occurrences of all k sensors
being clustered too close to each other.

Fig. 12 illustrates the relationship between the objective val-
ues calculated with cmax = 5 using (11) for 80 randomized
placements and their respective localization performance on
ten daily routine traces. The plot reveals a strong trend: the
localization errors drop with the increase in the objective val-
ues, lending empirical weight to the validity of our objective
function.

B. Experimental Setup

We compare three placement strategies: 1) placements
generated by our algorithm, i.e., optimized; 2) placements
crafted manually; and 3) randomized placements. The fol-
lowing subsections describe the placement generation in more
detail.

1) Optimized Placements: According to our reasoning in
Section V-A, the localization accuracy of optimized place-
ments greatly depends on the selected cmax value (maximum
preferable coverage utility). Having performed a number of
visual tests on the boundary cases, i.e., placements of 5 and
20 nodes, we narrowed down a possible range of cmax values
to a set of {3, 4, 5}. This choice was based on the following
observations: with cmax < 3 the impact of coverage util-
ity assignment on the results of the placement algorithm is
hardly noticeable; with cmax > 5 we observed oversaturation

Fig. 13. Localization error with respect to cmax.

of sensors in high-priority areas while some low-priority areas
did not get covered at all even with the significant budget of
20 sensors.

Next, we generated three placements, i.e., with cmax =
3, 4, 5, for each k = 5, . . . , 20 and tested them against the
artificial traces.2 Fig. 13 shows the average localization error
for each placement in relation to the cmax value. Although
in some cases the data points coincide (e.g., cmax = 3 and
cmax = 4 for 11 and 17–20 sensors), we observe a general
trend: lower error rates are achieved with cmax = 4 for k ≤ 11
sensors and with cmax = 5 for 11 < k ≤ 20. This trend con-
firms our intuition that cmax grows with k. It is worth noting
that k = 11 is an important threshold: this is the largest number
of sensors that can cover the majority of the space (exclud-
ing furniture) without overlap, i.e., this number is obtained by
dividing the total walkable area (area of the floorplan with-
out nonwalkable obstacles) by the area of a sensor footprint.
Once we have a budget of more than 11 sensors we cannot
avoid overlapping. Hence, it is natural to increase the value of
cmax for all k > 11. In all subsequent experiments, we use the
optimized placements chosen according to the observed trend,
i.e., those generated with cmax = 4 for k ≤ 11 and cmax = 5
for 11 < k ≤ 20. Examples of optimized placements for k = 9
and k = 20 are shown in Fig. 14.

2) Manual Placements: We assume that the expert design-
ing a placement is inclined to maximize total coverage without
specific considerations for the area occupied by furniture.
Typically, we want to distribute sensors uniformly so that the
amount of uncertainty about the occupant’s location is also
uniformly distributed across the space, even if the budget of
sensors is not sufficient for full coverage. Given more sen-
sors than necessary for full coverage, one would likely attempt
to design placements with a fairly regular “grid” of overlap-
ping regions. Fig. 15 shows two examples of manually crafted
placements: nine sensors, uniformly covering the space with
gaps between sensors, and 20 sensors, regularly overlapping.

We manually designed 15 placements for each k =
5, . . . , 20 following the aforementioned considerations. Our
final goal was to compare the performance of the optimized

2Note the parameter pod is set to 0.1 for all experiments conducted.
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Fig. 14. Examples of optimized placements. (a) 9 sensors, cmax = 4.
(b) 20 sensors, cmax = 5.

Fig. 15. Examples of manual placements achieving uniform coverage.
(a) 9 sensors. (b) 20 sensors.

placements against manual placements on the traces of the
typical daily routine. But first we would like to show that
our manual placements are designed without a bias toward

Fig. 16. “Zigzag” trace that systematically covers the space and ignores
furniture.

Fig. 17. Localization error of manual versus optimized placements tested on
zigzag traces.

a particular data set. We generated a number of traces that
systematically cover the entire space in a zigzag-like fashion
(see Fig. 16). The assumed model of the space used for these
traces is different from the initial model: it consists of the
walls solely (no furniture). Essentially, we attempt to generate
traffic of uniform density across the whole space and show that
the optimized placements have no advantage over the manual
placements on the uniformly-distributed mobility data.

Fig. 17 compares the performance of manual against opti-
mized placements on “zigzag” traces. We can see that the
manual placements outperform the optimized ones for all
k = 5, . . . , 20. The unpaired t-test shows that the difference
between the two types of placements is statistically significant
for all k except k = 7. This exercise suggests that the man-
ual placements are well-designed and can be considered good
candidates for a comparison with the optimized placements
when tested on the daily-routine traces.

3) Randomized Placements: As a performance baseline, we
generated five randomized placements for each k = 5, . . . , 20
as described in Section VIII-A. In the subsequent sections, we
report localization error of the kth randomized placement as
the average of 5 placements generated for every k, each tested
on ten daily-routine traces.

C. Performance Evaluation

Having selected 15 optimized placements, 15 manual place-
ments and averaging the results of five randomized placements
for each k = 5, . . . , 20, we compare the performance of the
three placement strategies relative to each other. Fig. 18 depicts
the average localization error achieved by each placement in
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Fig. 18. Localization error of optimized, manual, and randomized placements
tested on daily-routine traces.

Fig. 19. Difference in average localization errors of the optimal and manual
placements.

simulation experiments with ten daily-routine traces (a total
of 3943 location tuples). We do not show error bars since the
values of the standard error of the mean are so small as to be
visually indistinguishable.3

It is clear that both manual and optimized placements
significantly outperform randomized placements. An interest-
ing observation based on the performance of the randomized
placements is that the localization error generally decreases as
the number of sensors increases (although not strictly mono-
tonically) regardless of the placement strategy. That is, the
manual and optimized placements simply emphasize this trend
by monotonically improving localization accuracy with each
additional sensor. We also observe that the performance of
the optimized placements is either as good as that of the man-
ual placements or better in the majority of cases. That is, the
unpaired t-test shows that there is no significant difference
between the two placement strategies for k ∈ {5, 6, 8, 19}, and
the optimized placements are statistically better than the man-
ual ones for all other k except k = 20, the only case when
the manual placement statistically outperforms the optimized
placement. The difference in average localization error values
for all statistically significant cases is shown in Fig. 19.

Note the drastic change in results of the optimized place-
ments between k = 8 and k = 9. One notable detail
distinguishing the placement with nine sensors is that it is the
first placement (in the order of ascending k) with a sensor in

3For full descriptive statistics please refer to Table 1 in the supplementary
file on the journal website.

Fig. 20. Correspondence between the localization error and the number of
sensors.

the washroom [sensor #9 in Fig. 14(a)]. Our sensor-placement
algorithm deems that sensors placed in the washroom have
a rather low utility gain, for two reasons: 1) the walkable
area inside the washroom is very limited and 2) any sen-
sor reaching outside of the washroom is penalized due to
pod = 0.1. Therefore, such sensor candidates are disfavored
by our algorithm until the 9th iteration. However, when manu-
ally designing placements we included at least one washroom
sensor in all placements with k ≥ 6. Moreover, our daily-
routine traces contain a significant amount of mobility inside
the washroom. In principle, this shortcoming of our algorithm
could be mitigated by incorporating expert knowledge about
especially important areas into the coverage utility assignment
by artificially inflating the coverage utility values of grid points
in those areas.

Aside from optimizing localization accuracy under a cardi-
nality constraint, we are also interested in the reverse problem,
i.e., reducing the number of sensors while achieving a desired
performance level. Assuming that the localization accuracy
achieved with the manual placements is acceptable, we com-
pare the number of sensors required for a certain performance
level by both manual and optimized placements. Fig. 20 is
plotted from the same data as Fig. 18 but with the axes
swapped. Consider data points of the curve representing man-
ual placements within a span from 10 to 19 sensors. For each
manual placement with k = 10, . . . , 19 we may achieve the
same or better level of performance with an optimized place-
ment with (k − �) sensors where � is between 1 and 3 sensors
for different k. For example, the localization error of the man-
ual placement with 14 sensors is achievable with the optimized
placement comprising only 11 sensors. Such a reversed inter-
pretation of our results may eventually reduce the cost of a
new deployment. Essentially, we are not as much interested
in improving the localization accuracy with the given number
of sensors (considering the fact that the performance improve-
ment is relatively marginal, ranging between 4 and 11 cm in
individual cases) as in exploring the opportunity to reduce the
number of sensors without sacrificing performance.

If the localization data are used by online services (e.g.,
virtual-world visualization [6]), then the percentiles of error
distribution become more consistent quality indicators than the
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Fig. 21. Three quartiles of errors produced by optimized and manual
placements.

average error. That is, while visualizing the data in real-time
we prefer a placement that generates more accurate predictions
for a larger fraction of system run-time rather than a place-
ment whose overall average performance is better. Therefore,
we report three quartiles of error values produced by man-
ual and optimized placements in Fig. 21. It is clear that all
optimized placements with k < 20 outperform the respective
manual placements in the two lower quartiles. In other words,
by using optimized placements instead of manual ones we can
produce more accurate location predictions for at least 50%
of the system runtime.

Altogether, these experimental results suggest that the opti-
mized placements have a number of advantages over the other
two approaches. They also confirm that our objective func-
tion reliably estimates the quality of a sensor placement with
respect to eventual localization accuracy. In summary, our
placement algorithm has the potential to replace manual sensor
placement, thereby reducing the cost of future deployments of
the Smart-Condo system.

IX. CONCLUSION

The Smart-Condo project aims to support people with
chronic conditions to live independently at home, longer. Our
approach has emphasized a privacy-respecting and nonintru-
sive monitoring infrastructure comprised of sensors, which
collect an occupant’s activity data, and actuators, which con-
trol home ambience with the goal of improving the occupant’s
living quality. One of the most valuable sources of data for
caregivers is the occupant’s mobility profile, which can be
used for early diagnosis of chronic conditions or simply to
better deliver intelligent services spatially distributed in the
apartment. An accurate localization method is crucial to this
project.

Localization accuracy greatly depends on the sensor place-
ment, which is typically designed manually for each new
deployment and whose quality for localization purposes
depends on the designer’s expertise. The work we reported
in this paper investigated the problem of optimizing sensor
placement for localization in ambient assisted-living environ-
ments. In particular, we formulated an optimization prob-
lem under a cardinality constraint (i.e., a limited budget

of sensors). In doing so, we digressed from a typical sensor-
placement objective—to achieve maximum coverage of the
sensing field—and proposed to maximize an application-
specific utility-score function, defined on a set of points of
interest. We then proposed a methodology for assigning util-
ity scores to the points of interest based on the model of
anticipated mobility patterns. That is, the utility of a point
is proportional to the likelihood of the occupant visiting that
particular point as part of his daily routine. We then proposed a
greedy placement algorithm that generates near-optimal solu-
tions for the formulated optimization problem, and evaluated
the localization performance of the generated placements.

To empirically validate our methodology, we compared the
optimized placements against both manually designed and
randomized placements. The optimized placements signifi-
cantly outperformed all randomized placements and performed
better than manual placements in the majority of cases.
Overall, our experimental results suggest that our mobility
modeling methodology and proposed placement algorithm
may eventually eliminate the time-consuming and tedious
task of manually selecting the best placement strategy for
indoor localization, as well as reduce the cost of new
deployments.

Our framework has the advantage of simplicity and yet read-
ily accommodates several practical extensions. For instance,
it is simple for a practitioner to constrain the optimization
to exclude specific sensor placement locations for practical
and/or aesthetic purposes (e.g., to account for existing ceiling
infrastructure such as HVac, fire, and lighting equipment). It
can also be used to produce “incremental placements,” i.e.,
placing new sensors to complement an existing sensor array,
all while retaining the same approximation bounds.

Avenues for future work include investigating the fault-
tolerance of the optimized placements as well as testing them
in the real-world trials. In short-term test trials, we would like
to compare the localization accuracy predicted by our simu-
lation framework to the accuracy achieved with a physically
deployed system. In long-term trials with real patients, we
want to compare the mobility patterns modeled within our
framework prior to deployment with the occupant’s true mobil-
ity data. In particular, we would like to study the robustness of
our placements with respect to different sources of uncertainty
in the mobility data, e.g., inaccurate mobility model, unpre-
dicted furniture displacement, localization of more than one
person, etc. We also want to investigate whether long-term
learning of mobility patterns can be exploited to adjust the
placement for better localization performance or to reduce the
number of deployed/maintained sensors. Moreover, the num-
ber of motion sensors required can be even further reduced
if we include models of pressure sensors, reed switches,
and RFID readers, which we already use in the real-world
deployments but have not yet had their impact on deployment
planning investigated.

APPENDIX

Theorem 1: Given N walkable grid points, a set of sensor
candidates S, where each element sj ∈ S is defined through an
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N-dimensional vector sj, an N-dimensional vector of coverage
utility values c∗, and a number k, to maximize the objective
function �({s1, . . . , sk}) is NP-hard.

Proof: We show that our problem is NP-hard through
a polynomial-time reduction from the exact cover problem,
known to be NP-complete: given a set U and a collection A

of subsets of U, determine whether such a subcollection A
′

of
A exists that every element in U is contained in exactly one
subset in A

′
. That is, an exact cover is a collection of mutually

disjoint subsets of U whose union is U.
Throughout the reduction procedure, we will assume that the

number of subsets in A
′

is known and equals k. If this is false,
we can always try all possible choices, i.e., k = 1, . . . , |A|,
increasing the running time by no more than a factor |A|.
Therefore, if we can answer this decision problem under the
constraint that the subcollection is of size k in polynomial
time, then we have a polynomial time solution to the exact
cover problem as well.

We map the input of the exact cover problem to the input
of our problem as follows. First, we associate set U with
the collection of N walkable grid points, i.e., ui ∈ U cor-
responds to the ith grid point. Second, the collection A of
subsets of U becomes a collection of sensor candidates, where
each subset Aj from A corresponds to the following sensor-
coverage model of sensor sj: if ui is present in Aj, then the

ith grid point is covered by sensor sj, i.e., c
{sj}
i = 1 for all

ui ∈ Aj, and c
{sj}
i = 0 otherwise (where c

{sj}
i values are

components of sensor vector sj). In other words, we want
to determine whether such a collection of k sensors exists
that covers all the grid points without overlapping. The last
input parameter required for our problem is the coverage util-
ity vector c∗, and we assign every component of this vector c∗

i
to be any fixed constant C: 0 < C < 1, for all ui ∈ U,
i.e., any positive value less than the lowest positive c

{sj}
i value

(1 in our case).
Assume we have a polynomial time solver for our problem

that returns collection A
′

of k subsets of U. We can examine
the solution given by this solver and verify whether these sub-
sets are mutually disjoint, i.e., Ai ∩ Aj = ∅,∀Ai 	= Aj in A

′
,

and count the total number of covered elements, i.e., |∪k
j=1Aj|;

both operations are performed in polynomial time. If the sub-
sets are disjoint, and | ∪k

j=1 Aj| = |U|, then we return “yes”
for the original exact cover problem, and “no” otherwise. To
prove the correctness of this procedure, assume for purposes
of contradiction that an exact cover does exist, but that our
solver returned either (case 1) a disjoint collection that does
not cover the entire space, or (case 2) a collection of nondis-
joint subsets. Note these two cases are mutually exclusive and
exhaustive.

Let us consider the first case, in which the union of returned
disjoint subsets Aj does not entirely cover set U, i.e., | ∪k

j=1
Aj| < |U|. Recall our objective function (11): we want to
maximize the sum of utility scores of k sensors placed on
the grid while imposing a penalty for overlapping sensors.
According to (7), the utility score of arbitrary sensor sj that
does not overlap with any other sensors, i.e., sj ·sm = 0 for all

j 	= m, equals sj · c∗ = ∑N
i=1 c

{sj}
i c∗

i . The objective value for

s1, . . . , sk nonoverlapping sensors represented by A1, . . . , Ak

disjoint subsets is therefore

�({s1, . . . , sk}) =
k∑

j=1

N∑

i=1

c
{sj}
i c∗

i (12)

= C
k∑

j=1

N∑

i=1

c
{sj}
i (13)

= C| ∪k
j=1 Aj| < C|U|. (14)

Equation (12) sums up the utility scores of k nonoverlapping
sensors; c∗

i values are replaced with the constant C and taken

out of the summation on (13); since c
{sj}
i = 1 for every element

ui ∈ Aj, and no ui belongs to two distinct subsets simultane-

ously, the summation of c
{sj}
i values across all k sensors is

equivalent to the number of elements in the union of subsets
Aj on (14). Note, however, that since the exact cover exists,
and it also consists of mutually disjoint subsets, our objec-
tive function for such a cover would be equal C|U|, which
is greater than the objective value for the subsets Aj. This
contradicts the assumed optimality of our hypothetical solver,
altogether proving that this procedure will not return a partial
cover if a full one exists.

Let us address the second case, i.e., the subsets returned by
the solver are not disjoint. We consider two pairs of arbitrary
sets A1, A2, and B1, B2 (with corresponding sensors a1, a2,
and b1, b2) such that A1 ∩ A2 	= ∅, B1 ∩ B2 = ∅, and
A1 ∪ A2 ⊆ B1 ∪ B2. Let us calculate values of our objective
function for these two pairs of sets separately. According to
the derivation for disjoint sets (14), �({b1, b2}) = C|B1 ∪B2|.
The objective value for overlapping sensors, however, includes
a penalty, which leads to the following inequality:

�({a1, a2}) = a1 · c∗ + a2 · c∗ − a1 · a2 (15)

=
N∑

i=1

c{a1}
i c∗

i +
N∑

i=1

c{a2}
i c∗

i −
N∑

i=1

c{a2}
i c{a2}

i (16)

= C

( N∑

i=1

c{a1}
i +

N∑

i=1

c{a2}
i

)

−
N∑

i=1

c{a2}
i c{a2}

i (17)

= C(|A1 ∪ A2| + |A1 ∩ A2|) − |A1 ∩ A2| (18)

= C|A1 ∪ A2| + (C − 1)|A1 ∩ A2| (19)

< C|B1 ∪ B2| = �({b1, b2}). (20)

Equation (15) is composed by plugging the utility score
expression (7) into the objective function (11). We replace vec-
tor terms with corresponding scalar values on (16). The sums
in the first term on (17) are essentially a sum of the number of
elements in sets A1 and A2, respectively. To express this num-
ber through the union of two sets, we should also account for
the elements that belong to both sets and get double-counted
in the original summation. We do so by adding up the number
of elements in the union and the number of elements in the
intersection of the two sets in the first term on (18). The strict
inequality on (20) holds due to the following.

1) The assumption that A1 ∪ A2 ⊆ B1 ∪ B2, which is
equivalent to |A1 ∪ A2| ≤ |B1 ∪ B2|.

2) The assumption that A1 ∩ A2 	= ∅.
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3) The assigned value C < 1, so that (C − 1)|A1 ∩ A2| is
strictly negative.

Essentially, the objective value for a number of disjoint
subsets is strictly greater than its value for a number of inter-
secting subsets that cover the same or fewer elements, given
a particular assignment of c∗

i and c
{sj}
i values. Although we

showed this only for pairs of subsets, this property holds for
any number of nondisjoint subsets since the “overlap” penalty
is accumulative. Since we know that the exact cover A

′
of

set U exists, the objective value for A
′

is strictly greater
than that of any other collection of nondisjoint subsets, which
contradicts the assumed optimality of our hypothetical solver.

We proved that if the exact cover of set U exists, then
our problem solver will always find it. Since there exists a
polynomial-time reduction of the exact cover problem to an
instance of our problem, our problem is also NP-hard.

Theorem 2: The objective function (11) is submodular.
Proof: Submodularity is formalized for a set function F,

defined on subsets of V, as follows:

F(A ∪ {s}) − F(A) ≥ F(B ∪ {s}) − F(B) (21)

for all A ⊆ B ⊆ V and s ∈ V \ B. We may rewrite this
property for subsets A = {s1, . . . , sm−1} and B = A∪{sm} and
our objective function as follows:

�({s1, . . . , sm−1, s′}) − �({s1, . . . , sm−1})
≥ �({s1, . . . , sm−1, sm, s′}) − �({s1, . . . , sm−1, sm}) (22)

where s1, . . . , sm−1, sm, s′ ∈ S and s′ 	∈ {s1, . . . , sm}. To prove
that this property holds, we apply several transformations.
Plugging the initial definition of the objective function from
(11) into the left and right sides of (22), respectively, we obtain

�({s1, . . . , sm−1, s′}) − �({s1, . . . , sm−1}) (23)

=
( m−1∑

i=1

δ
Pi−1
si + δ

{s1,...,sm−1}
s′

)

−
m−1∑

i=1

δ
Pi−1
si (24)

= δ
{s1,...,sm−1}
s′ (25)

�({s1, . . . , sm, s′}) − �({s1, . . . , sm}) (26)

=
( m∑

i=1

δ
Pi−1
si + δ

{s1,...,sm}
s′

)

−
m∑

i=1

δ
Pi−1
si (27)

= δ
{s1,...,sm}
s′ . (28)

Plugging results (25) and (28) into inequality (22) is
equivalent to the following:

δ
{s1,...,sm}
s′ ≤ δ

{s1,...,sm−1}
s′ . (29)

To prove this inequality, we transform the left term using
the utility score function definition (8) (omitting positive
thresholding for clarity)

δ
{s1,...,sm}
s′ = s′ ·

(

c∗ − c{s1,...,sm}
)

(30)

= s′ ·
(

c∗ −
∑

1≤j≤m

sj

)

(31)

= s′ ·
(

c∗ −
∑

1≤j≤m−1

sj − sm

)

(32)

= s′ ·
(

c∗ − c{s1,...,sm−1}
)

− s′ · sm (33)

= δ
{s1,...,sm−1}
s′ − s′ · sm. (34)

Hence, the inequality (29) holds as long as s′ · sm ≥ 0.
Since an arbitrary sensor vector (individual sensor-coverage
model) sj is specified using c

{sj}
i ≥ 0, a dot product of any

two vectors is also always nonnegative. Thus, δ
{s1,...,sm}
s′ is

always ≤ δ
{s1,...,sm−1}
s′ (regardless of positive thresholding) and

our objective function is submodular for all A ⊆ B ⊆ S such
that |B \ A| = 1. This argument can be applied to arbitrary
A ⊆ B inductively and will hold true if our objective function
is monotonic, which we prove next.

Theorem 3: The objective function (11) is monotonic.
Proof: A set function F is considered monotonic if F(A) ≤

F(B) for all A ⊆ B ⊆ V. Thus, we want to prove
that �({s1, . . . , sm−1}) ≤ �({s1, . . . , sm}). We may rewrite
this inequality as �({s1, . . . , sm}) − �({s1, . . . , sm−1}) ≥ 0
and use the result from (25) by replacing s′ with sm, i.e.,
�({s1, . . . , sm}) − �({s1, . . . , sm−1}) = δ

{s1,...,sm−1}
sm ≥ 0. The

last inequality is true due to our definition of a utility score
as nonnegative in (8), thus proving the monotonicity of our
objective (11).
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